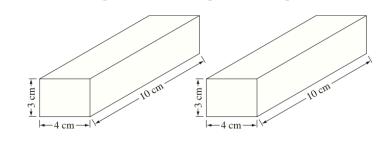
Name:____

10. If a cube has a surface area of 2.16 m^2 , then which of the following equations represents the height, h, of the cube?

A.
$$h = \sqrt{\frac{2.16}{6}} \text{ m}$$

B.
$$h = \sqrt{\frac{6}{2.16}}$$
 m

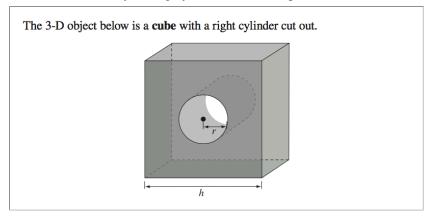

C.
$$h = \frac{2.16}{6}$$
 m

D.
$$h = 2.16 \times 6 \text{ m}$$

- 13. If the side length of a cube is tripled, then the surface area of the cube will increase by a factor of
 - **A.** 6
 - **B.** 9
 - **C.** 12
 - **D.** 27

Use the following information to answer numerical-response question 6.

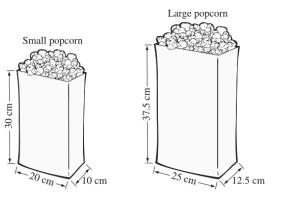
Darren joins the rectangular prisms shown below to create a new rectangular prism that has the greatest possible surface area. He then paints all visible surfaces. After the paint dries, Darren separates the two prisms.


Numerical Response

6. The total area of both prisms that has **not** been painted is _____ cm².

(Record your answer in the numerical-response section on the answer sheet.)

Name:____

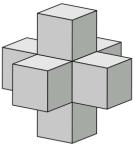

Use the following information to answer question 13.

- 13. Which expression represents the surface area of the 3-D object?
 - **A.** $6h^2 2\pi r^2 + 2\pi rh$
 - **B.** $4h^2 2\pi r^2 + 2\pi rh$
 - C. $6h^2 + 2\pi r^2 2\pi rh$
 - **D.** $4h^2 + 2\pi r^2 2\pi rh$

Use the following information to answer numerical-response question 2.

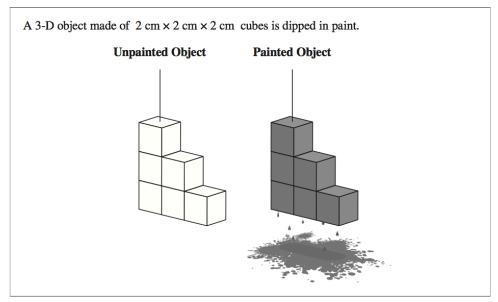
The local movie theatre sells two sizes of popcorn. The large bag of popcorn is a scale enlargement of the small bag.

Numerical Response


2. The difference between the exterior surface area of the large popcorn bag and the small popcorn bag is _____ cm².

(Record your answer in the numerical-response section on the answer sheet.)

Name:


Use the following information to answer question 13.

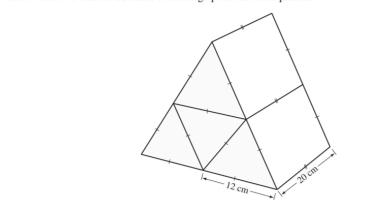
The following 3-D object is composed of identical cubes. The volume of the 3-D object is $56~{\rm cm}^3$.

- 13. The surface area of the 3-D object above is
 - **A.**30 cm²
 - **B.** 60 cm^2
 - C. 120 cm^2
 - **D.** 144 cm^2

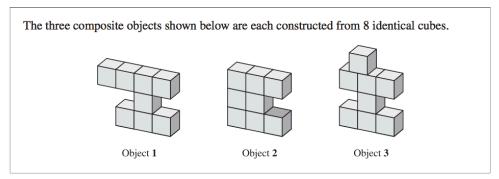
Use the following information to answer question 18.

- 18. If the painted object is separated into individual cubes, then the total area of the **unpainted** surfaces will be
 - \mathbf{A} . 12 cm²
 - **B.** 24 cm^2
 - **C.** 32 cm^2
 - **D.** 48 cm^2

Name:_____


Use the following information to answer question 14.

The following 3-D object is composed of identical cubes. The volume of each cube is 8 cm³.


- 14. What is the total surface area of the 3-D object shown above?
 - **A.** 120 cm^2
 - **B.** 100 cm^2
 - C. 88 cm^2
 - **D.** 72 cm^2

Four identical triangular prisms are arranged together to form one large, triangular prism, as shown below. The five exterior surfaces of the large prism are then painted.

- 30. To the nearest square centimetre, what is the total area of the painted surfaces?
 - **A.** 1939 cm^2
 - **B.** 2.016 cm^2
 - C. 2.659 cm^2
 - **D.** 2736 cm^2

Use the following information to answer question 34.

- **34.** Which of the following statements correctly describes the relationship between the composite objects?
 - A. Object 2 has a greater surface area than Object 1.
 - **B.** The surface areas of the three objects are the same.
 - C. Object 3 has a greater surface area than both Object 1 and Object 2.
 - **D.** The surface area of Object 1 is equal to the surface area of Object 3.