Numeracy, Including Rational numbers and Square roots

| Objective | No | Daily Topic | Key Idea |
| :---: | :---: | :---: | :---: |
| The first 18 pages are review and have been added to ensure a smooth transition into the WNCP Math 9 curriculum. | 1. | 1-8: Numbers Systems, Write numbers | Place the numbers $2,3.5, \pi, 2 / 9,0,-4$ in to the following categories real number, rational number... <br> Write the 1245.036 in words Round 5.2498 to the nearest hundredth. |
|  | 2. | 9-14: Integers $\rightarrow 4$ operations | Evaluate. $-5-1+(-2)-5=$ Evaluate. $-(-1)(-1)(-1)(-1)=$ Evaluate. $-70 \div 5=$ |
|  | 3. | 15-18:Integers $\rightarrow$ BEDMAS | Evaluate. $5-3(4-3 \times 2)^{2}=$ |
| N3 demonstrate an understanding of rational numbers by - comparing and ordering rational numbers - solving problems that involve arithmetic operations on rational numbers | 4. | - 19-22: Decimals $\rightarrow 4$ operations <br> - Solve a given problem involving operations on rational numbers in fraction form and decimal form | Evaluate. $102.04+54.35=$ <br> Evaluate. $72.9 \times 66.12=$ <br> Evaluate. $434 \div 7.8=$ <br> Evaluate. $62.74-61.29=$ |
|  | 5. | 23-27: Equivalent Fractions, Mixed number, improper fractions and converting. |  |
|  | 6. | 27-30: Comparing and Ordering Rational Numbers. <br> - Order a given set of rational numbers, in fraction and decimal form, by placing them on a number line (e.g., - $0.666 \ldots, 0.5,-5 / 8$ ) <br> - Identify a rational number that is between two given rational numbers | Order the following rational numbers from least to greatest: $4,-3.5, \frac{21}{6},-\frac{24}{7},-1$ |
|  | 7. | 31-34:Adding Subtracting Fractions <br> - Solve a given problem involving operations on rational numbers in fraction form and decimal form | Evaluate: $-\frac{4}{3}+\frac{3}{4}=$ \& Evaluate: $3-\frac{3}{4}=$ |
|  | 8. | 35-39: Multiplying Fractions <br> Solve a given problem involving operations on rational numbers in fraction form and decimal form | Evaluate. $2 \frac{1}{4} \times \frac{8}{3}=$ \& Evaluate. $\frac{1}{4} \div \frac{5}{8}=$ |
| N4 explain and apply the order of operations, including exponents, with and without technology | 9. | 40-42: Bedmas with fractions <br> - Solve a given problem by applying the order of operations without the use of technology <br> - Solve a given problem by applying the order of operations with the use of technology (This will be covered in later chapters) <br> - Identify the error in applying the order of operations in a given incorrect solution | Evaluate. $\frac{20}{40}-\frac{21}{40} \times \frac{80}{7}=$ <br> Evaluate. $\left(\frac{5}{3}\right)^{2}-\frac{12}{20}=$ |
| N5 determine the square root of positive rational numbers that are perfect squares | 10. | 43-46: Rational Square roots <br> Determine whether or not a given rational number is a square number and explain the reasoning <br> - Determine the square root of a given positive rational number that is a perfect square <br> - Identify the error made in a given calculation of a square root (e.g., Is 3.2 the square root of 6.4 ?) <br> - Determine a positive rational number given the square root of that positive rational number | Evaluate. $\sqrt{\frac{25}{36}}$ |
| N6 determine an approximate square root of positive rational numbers that are non-perfect squares | 11. | 47-49: Irrational Square roots <br> - Estimate the square root of a given rational number that is not a perfect square, using the roots of perfect squares as benchmarks <br> - Determine an approximate square root of a given rational number that is not a perfect square using technology (e.g., calculator, computer) (later) <br> - Explain why the square root of a given rational number as shown on a calculator may be an approximation (later) <br> - Identify a number with a square root that is between two given numbers | $\text { Approximate } \sqrt{40}, \sqrt{0.34}$ |
|  | 12. | 50: Chapter Review and Practice Test <br> - Help students develop sound study habits. <br> - Many students will graduate high school saying they do not know how to study for math tests. |  |
|  | 13. | Go over the practice Test |  |
|  | 14. | Unit Evaluation |  |

## Surface Area

| Objective | \# | Daily Topic | Key Ideas |
| :---: | :---: | :---: | :---: |
| N6 determine an approximate square root of positive rational numbers that are non-perfect squares (This is a continuation of the learning targets from Rational numbers and square roots) | 1. | Area Review: Rectangles, Circles \& Triangles. Pg(4-7) <br> - Determine an approximate square root of a given rational number that is not a perfect square using technology (e.g., calculator, computer) <br> - Explain why the square root of a given rational number as shown on a calculator may be an approximation | Estimate the side length of a square with an area of $51 \mathrm{~cm}^{2}$ to the nearest tenth. Is your calculator answer, an exact answer? Explain |
|  | 2. | Area Review: Rectangles, Circles \& Triangles. (8-12) <br> - Solve a given problem by applying the order of operations with the use of technology | Determine the area of rectangles, triangles \& circles. Given $C=2 \pi r$, calculate the circumference of a circle with area $40 \mathrm{~cm}^{2}$. |
| N $\overline{4}$ explain and apply the order of operations, including exponents, with and without technology. (This is a continuation of the learning targets from Rational numbers and square roots.) | 3. | Surface Area Review: Prisms \& Cylinders (Pg13-17) <br> - Solve a given problem by applying the order of operations with the use of technology | Determine the surface area of an isosceles triangular prism with the following dimensions; base 12 cm , height 8 cm and width 3 cm . |
| S\&S2 determine the surface area of composite 3-D objects to solve problems [C, CN, PS, R, V] | 4. | Composite Shapes and Overlap(pg. 18-21) <br> - Determine the area of overlap in a given concrete composite 3-D object, and explain its effect on determining the surface area (limited to right cylinders, right rectangular prisms, and right triangular prisms) | The two cylinders have respective radii of 5 cm and 3 cm and surface areas of $200 \mathrm{~cm}^{2}$ and $100 \mathrm{~cm}^{2}$. <br> Sandy glues the two cylinders together and paints the composite shape. How much must be subtracted from $300 \mathrm{~cm}^{2}$ to determine the new surface area? |
|  | 5. | Solve Problems Involving Surface Area (pg. 22-24) <br> - Determine the surface area of a given concrete composite 3-D object (limited to right cylinders, right rectangular prisms, and right triangular prisms) <br> - Solve a given problem involving surface area | A painter is going to paint every surface except the base. How many surfaces need to be painted? Determine the total surface area. |
|  | 6. | Chapter Review and Practice Test <br> - Help students develop sound study habits. <br> - Many students will graduate high school saying they do not know how to study for math tests. |  |
|  | 7. | Go over Practice Test |  |
|  | 8. | Unit Evaluation |  |

## Exponents and Powers

| Objective | \# | Daily Topic | Key Ideas |
| :---: | :---: | :---: | :---: |
| N1 demonstrate an understanding of powers with integral bases (excluding base <br> 0 ) and whole number exponents by <br> - representing repeated multiplication using powers <br> - using patterns to show that a power with an exponent of zero is equal to one <br> - solving problems involving powers $[C, C N, P S, R, V]$ <br> N2 demonstrate an understanding of operations on powers with integral bases (excluding base 0 ) and whole number exponents $[C, C N, P S, R, T]$ | 1. | Introduction to Exponents (pg. 4-8) <br> - Demonstrate the differences between the exponent and the base by building models of a given power, such as $2^{3}$ and $3^{2}$ <br> - Explain, using repeated multiplication, the difference between two given powers in which the exponent and base are interchanged (e.g., $10^{3}$ and $3^{10}$ ) <br> - Express a given power as a repeated multiplication <br> - Express a given repeated multiplication as a power <br> - Explain the role of parentheses in powers by evaluating a given set of powers (e.g., $(-2)^{4},\left(-2^{4}\right)$ and $\left.-2^{4}\right)$ <br> - Evaluate powers with integral bases (excluding base 0 ) and whole number exponents | - Does $2^{3}=3^{2}$ ? Explain your reasoning with a picture. <br> - Use repeated multiplication to explain the difference between $2^{5}$ and $5^{2}$ ? <br> - Express $5^{4}$ as a repeated multiplication. <br> - Express $(-3)(-3)(-3)(-3)$ as power. <br> - Which of the following are equal: $-3^{2},\left(-3^{2}\right),-(3)^{2},(-3)^{2}$ Explain your reasoning. |
|  | 2. | Order of operations and Calculator skills(pg. 9-13) <br> - Determine the sum of two given powers (e.g., $5^{2}+5^{3}$ ) and record the process <br> - Determine the difference of two given powers (e.g., $4^{3}-4^{2}$ ) and record the process <br> - Identify the error(s) in a given simplification of an expression involving power. | Evaluate $5^{2}+3^{3}=$ and record the process. <br> - Evaluate $-3^{2}-2^{3}=$ and record the process. <br> - Spot the error. $(5-3 \times 2)^{2}=$ $\begin{gathered} =(2 \times 2)^{2} \\ =(4)^{2}=16 \end{gathered}$ |
|  | 3. | Extra time for first two sections. |  |
|  | 4. | Exponent laws (pg. 14-17) <br> - Evaluate a given expression by applying the exponent laws | Evaluate. <br> - $-19^{20} \div(-19)^{18}$, <br> - $\frac{2^{5} \times 2}{2^{2}} \times \frac{2^{2} \times 2^{4}}{2^{5}}=$ |
|  | 5. | Exponent laws (Pg. 17-20) <br> - Identify and correct an error in a given incorrect solution of a linear equation <br> - Identify the error(s) in a given simplification of an expression involving powers. <br> - Demonstrate, using patterns, that $a^{0}$ is equal to 1 for a given value of $a(a \neq 0)$ | Determine a pattern to explain the value of $2^{0}$. |
|  | 6. | Exponent laws (Pg. 21-26) <br> - Explain, using examples, the exponent laws of powers with integral bases (excluding base 0 ) and whole number exponents: | Evaluate. $\frac{2^{2} \times 2^{8}\left(2^{5}\right)^{2}}{2^{3}\left(2^{2}\right)^{6}}=$ <br> Use an example to clearly explain each exponent law. |
|  | 7. | Extra time for last three sections. |  |
|  | 8. | Chapter Review and Practice Test <br> - Help students develop sound study habits. <br> - Many students will graduate high school saying they do not know how to study for math tests. |  |
|  | 9. | Go over Practice Test |  |
|  | 10. | Unit Evaluation |  |

Polynomials.

| Objective | No | Daily Topic | Key Ideas |
| :---: | :---: | :---: | :---: |
| P\&R5 demonstrate an understanding of polynomials (limited to polynomials of degree less than or equal to 2) [C, CN, R, V] | 1. | Introduction to Modeling Polynomials <br> - Write the expression for a given model of a polynomial <br> - Describe a situation for a given first degree polynomial expression | Write an expression to represent any number in the following pattern, 2,4,6,8,... |
|  | 2. | The language of Polynomials <br> - Create a concrete model or a pictorial representation for a given polynomial expression <br> - Write the expression for a given model of a polynomial <br> - Identify the variables, degree, number of terms, and coefficients, including the constant term, of a given simplified polynomial expression | Given $5 x^{2}+3 x-4$ name the variable(s), constant(s), coefficient(s), terms, type of polynomial and degree of the polynomial. <br> Model $-2 x^{2}+x-5$ using algebra tiles |
|  | 3. | Extra Day to Practice |  |
|  | 4. | Collecting Like Terms <br> - Match equivalent polynomial expressions given in simplified form (e.g., $4 x-3 x^{2}+2$ is equivalent to $-3 x^{2}+4 x+2$ ) | Which polynomials can be represented by the same of algebra tiles? <br> A. $7 x-4+3 x^{2}$ <br> B. $-7 x+4+3 x^{2}$ <br> C. $3 y^{2}-7 y+4$ <br> D. $3 x^{2}-7 x+4$ |
|  | 5. | Extra Day to Practice |  |
| P\&R6 model, record, and explain the operations of addition and subtraction of polynomial expressions, concretely, pictorially, and symbolically (limited to polynomials of degree less than or equal to 2) [C, CN, PS, R, V] | 6. | Adding and subtracting Polynomials <br> - Model addition of two given polynomial expressions concretely or pictorially and record the process symbolically <br> - Model subtraction of two given polynomial expressions concretely or pictorially and record the process symbolically <br> - Apply a personal strategy for addition and subtraction of given polynomial expressions, and record the process symbolically <br> - Identify equivalent polynomial expressions from a given set of polynomial expressions, including pictorial and symbolic representations <br> - Identify the error(s) in a given simplification of a given polynomial expression | Simplify: $\left(-x^{2}+7 x+9\right)+\left(6 x^{2}-5\right)$ <br> Simplify $\left(3 x_{5}-5 x+5\right)-\left(x_{5}-x+3\right)$ using algebra tiles. |
| P\&R7 model, record, and explain the operations of multiplication and division of polynomial expressions (limited to polynomials of degree less than or equal to 2) by monomials, concretely, pictorially, and symbolically [C, CN, R, V] | 7. | Multiplying Polynomials by Constants or Monomials <br> - Model multiplication of a given polynomial expression by a given monomial concretely or pictorially and record the process symbolically <br> - Apply a personal strategy for multiplication and division of a given polynomial expression by a given monomial <br> - Provide examples of equivalent polynomial expressions <br> - Identify the error(s) in a given simplification of a given polynomial expression | Use algebra tiles to complete the multiplication $3(2 x+3)=$ <br> Correct any errors if applicable. $\begin{aligned} & -2 x(-4 x+2-11 z) \\ = & 8 x^{2}+4 x+22 z \end{aligned}$ |
|  | 8. | Dividing Polynomials by Constants or Monomials <br> - Model division of a given polynomial expression by a given monomial concretely or pictorially and record the process symbolically <br> - Apply a personal strategy for multiplication and division of a given polynomial expression by a given monomial <br> - Provide examples of equivalent polynomial expressions <br> - Identify the error(s) in a given simplification of a given polynomial expression | Simplify. $\frac{4 x^{2}-16 x}{x}=$ |
|  | 9. | Chapter Review and Practice Test <br> - Help students develop sound study habits. <br> - Many students will graduate high school saying they do not know how to study for math tests. |  |
|  | 10. | Go over Practice Test |  |
|  | 11. | Unit Evaluation |  |

## Solving Linear Equations and Inequalities

| Objective | \# | Daily Topic | Key Ideas |
| :---: | :---: | :---: | :---: |
| P\&R3 model and solve problems using linear equations of the form: $a x=b^{*}$ $\frac{x}{a}=b, a \neq 0^{*}$ $a x+b=c^{*}$ $\frac{x}{x}+b=c^{\prime} a \neq 0^{*}$ <br> a $a(x+b)=c^{*}$ $a x+b=c x+d$ $a(b x+c)=d(e x+f)$ $\mathrm{CN}, \mathrm{PS}, \mathrm{~V}]$ | 1. | Introduction to Solving Linear Equations (pg. 4-7) <br> - Model the solution of a given linear equation using concrete or pictorial representations, and record the process. | Algebra stones and Algebra Tiles. <br> Solve $x+5=10, x-7=10,2 x=10, \frac{x}{3}=10$ |
|  | 2. | Solving equations of the form $a x+b=c$ and $a / c+b=c(p g .8-10)$ <br> - Solve a given linear equation symbolically. <br> - Solve a given problem using a linear equation and record the process. | Solve. $4 m+3=31 \& \frac{2}{5} m-5=3$ |
|  | 3. | Solving equations of the form $a(x+b)=c$ and $a x+b=c x+d(p g$. 11-14) <br> - Determine, by substitution, whether a given rational number is a solution to a given linear equation. | Solve. $4(m+3)=40 \& 6 m+3=2 m+15$ <br> Is $m=5$ a solution to the equation $2(m+2)=14$ ? |
|  | 4. | More practice with $a x+b=c x+d$ (Pg. 15-18) <br> - Identify and correct an error in a given incorrect solution of a linear equation | Solve. $2(m+1)+4 m=4(m-2)+6$. |
|  | 5. | Solve equation with fractions. (Pg. 19-23) <br> - Solve a given linear equation symbolically. | Solve $\frac{m}{3}+\frac{2 m}{5}-\frac{1}{2}=2$ |
|  | 6. | Solve Linear equations without numbers. (Pg. 24-28) <br> - Solve a given linear equation symbolically. | Solve for m. $A(m+n)=B$ |
| P\&R4 explain and illustrate strategies to solve single variable linear inequalities with rational coefficients within a problem-solving context. | 7. | Introduction to linear inequalities (Pg. 29-33) <br> - Translate a given problem into a single variable linear inequality using the symbols $\geq,>,<$, or $\leq$. <br> - Determine if a given rational number is a possible solution of a given linear inequality. | Write an expression to represent the following statement: Melanie needs at least $\$ 280$ for snow boarding. |
|  | 8. | Inequalities that Include Addition and Subtraction (Pg. 34-37) <br> - Generalize and apply a rule for subtracting a positive or negative number to determine the solution of a given inequality. <br> - Generalize and apply a rule for multiplying or dividing by a positive or negative number to determine the solution of a given inequality. <br> - Solve a given linear inequality algebraically and explain the process orally or in written form. <br> - Verify the solution of a given linear inequality using substitution for multiple elements in the solution. | Solve $2 x+5<25$ and verify your solution. <br> True or False. $\text { If }-2 x>-10 \text { then } x>5$ |
|  | 9. | Solving Problems with Linear Inequalities (Pg. $38-41$ ) Compare and explain the process for solving a given linear equation to the process for solving a given linear inequality. <br> - Graph the solution of a given linear inequality on a number line. <br> - Compare and explain the solution of a given linear equation to the solution of a given linear inequality. <br> - Solve a given problem involving a single variable linear inequality and graph the solution. | Vertical Wireless charges $\$ 50$ / month plus $\$ 0.25$ for all minutes above 400 minutes per month. Frue Gal has decided that she does not want to pay more than $\$ 70$ per month. Write an inequality to represent how many minutes she can use per month without going over her $\$ 70$ limit. Approximate your solution on the number line |
|  | 10. | Chapter Review and Practice Test <br> - Help students develop sound study habits. <br> - Many students will graduate high school saying they do not know how to study for math tests. |  |
|  | 11. | Go over Practice Test |  |
|  | 12. | Unit Evaluation |  |

## Solving Problems with Linear Equations

- These outcomes have been met in the linear relations chapter and linear equations chapter.
- This chapter is for increasing student confidence with word problems.

| Objective | \# | Daily Topic | Key Ideas |
| :---: | :---: | :---: | :---: |
| $P \& R 1$ generalize a pattern arising from a problem-solving context using linear equations and verify by substitution [C, CN, PS, R, B3 model and solve problems using linear equations of the form: $a x=b^{*}$ | 1. | Introduction to word problems 1 (pg. 3-6) <br> - Write a linear equation to represent a given context Solve a given linear equation symbolically. <br> - Solve a given problem using a linear equation and record the process. <br> - Determine, by substitution, whether a given rational number is a <br> - solution to a given linear equation. | Jane is 3 years more than twice Johnny's age. The sum of their ages is 18 . How old is each? |
|  | 2. | Consecutive number problems (pg.7-10) <br> - Write a linear equation to represent a given context Solve a given linear equation symbolically. <br> - Solve a given problem using a linear equation and record the process. <br> - Determine, by substitution, whether a given rational number is a solution to a given linear equation. | Find 3 consecutive even numbers such that the sum of the $1^{\text {st }}$ and the $3^{\text {rd }}$ numbers exceeds the $2^{\text {nd }}$ number by 10 . |
| $\begin{aligned} & \frac{x}{a}=b^{\prime} a \neq 0^{*} \\ & a x+b=c^{*} \\ & \frac{x}{a}+b=c^{\prime} a \neq 0^{*} \\ & a(x+b)=c^{*} \\ & a x+b=c x+d \end{aligned}$ | 3. | Age problems part 2 (pg. 11-14) <br> Write a linear equation to represent a given context Solve a given linear equation symbolically. <br> - Solve a given problem using a linear equation and record the process. <br> - Determine, by substitution, whether a given rational number is a <br> - - solution to a given linear equation. $\qquad$ | Jon is 8 years older than his sister. In 3 years, he will be twice as old as she will be then. How old are they now? |
|  | 4. | Coin Problems Part 1 (Pg. 15-17) <br> - Write a linear equation to represent a given context Solve a given linear equation symbolically. <br> - Solve a given problem using a linear equation and record the process. <br> - Determine, by substitution, whether a given rational number is a - - - solution to a given linear equation. | A boy has 7 more dimes than quarters. The total value of the coins is $\$ 4.90$. Find the number of dimes and quarters. |
| $\begin{aligned} & a(b x+c)=d(e x \\ & \frac{a}{x}=b \cdot a \neq 0^{*} \end{aligned}$ <br> *Where a, b, c, d, e, and f [C, CN, PS, V] | 5. | Coin Problems Part $2^{-1}$ (Pg. 18-19) <br> - Write a linear equation to represent a given context Solve a given linear equation symbolically. <br> - Solve a given problem using a linear equation and record the process. <br> - Determine, by substitution, whether a given rational number is a solution to a given linear equation. | A collection of dimes and quarters is worth $\$ 15.25$. There are 103 coins in all. How many of each is there? |
|  | 6. | Perimeter Problems Part 1 (Pg. 20-22) <br> - Write a linear equation to represent a given context Solve a given linear equation symbolically. <br> - Solve a given problem using a linear equation and record the process. <br> - Determine, by substitution, whether a given rational number is a solution to a given linear equation. | The length of a rectangle is 3 times the width. The perimeter is 96 cm . Find the width and length. |
|  | 7. | Perimeter Problems Part 2 (Pg. 22-25) <br> - Write a linear equation to represent a given context Solve a given linear equation symbolically. <br> - Solve a given problem using a linear equation and record the process. <br> - Determine, by substitution, whether a given rational number is a solution to a given linear equation. | The length of a rectangle is 3 times the width. If the length is decreased by 4 m and the width is increased by 1 m . The perimeter will be 66. Find the dimensions of the original rectangle. |
|  | 8. | Chapter Review and Practice Test <br> - Help students develop sound study habits. <br> - Many students will graduate high school saying they do not know how to study for math tests. |  |
|  | 9. | Go over Practice Test |  |
|  | 10. | Unit Evaluation |  |

Linear Relations

| Objective | \# | Daily Topic | Key Ideas |
| :---: | :---: | :---: | :---: |
| P\&R1 generalize a pattern arising from a problem-solving context using linear equations and verify by substitution [C, CN, PS, R, V] | 1. | Describing Patterns Algebraically (pg. 3-6) <br> - Write an expression representing a given pictorial, oral, or written pattern. <br> - Write a linear equation to represent a given context. | Write a linear equation to represent this pattern. <br> Jason cuts lawns as his summer job. He charges a travelling fee of $\$ 10$ plus $\$ 20 /$ hour for his time. Write an equation to represent this pattern. |
|  | 2. | Describing Patterns in Table of Values (pg. 7-10) <br> - Solve, using a linear equation, a given problem that involves pictorial, oral, and written linear patterns. <br> - Write a linear equation representing the pattern in a given table of values and verify the equation by substituting values from the table | Write an equation to represent the table of values. |
| P\&R2 graph linear relations, analyze the graph, and interpolate or extrapolate to solve problems [C, CN, PS, R, T, V] | 3. | Interpreting Patterns in Graphs (pg. 11-15) <br> - Describe a context for a given linear equation <br> - Describe the pattern found in a given graph. <br> - Extend a given graph (extrapolate) to determine the value of an unknown element <br> - Interpolate the approximate value of one variable on a given graph given the value of the other variable | Determine the value of $y$ if $x=1$ or $x=6$. |
|  | 4. | Review |  |
|  | 5. | Analyzing graphs to solve problems (Pg. 16-19) <br> - Extrapolate the approximate value of one variable from a given graph given the value of the other variable |  <br> At what point in time is the salary job not a good financial idea. |
|  | 6. | Graphing linear Relations (Pg. 20-23) <br> - Graph a given linear relation, including horizontal and vertical lines | Graph $y=3 x+1$ |
|  | 7. | Graphing linear Relations to solve problems (Pg. 24-27) <br> - Match given equations of linear relations with their corresponding graphs <br> - Solve a given problem by graphing a linear relation and analyzing the graph | Konfuzd currently charges his customers a fixed rate of $\$ 150$ per job. His friend Juda thinks he will make more money if he charges a travel fee of $\$ 30$ plus $\$ 40 /$ hour. Draw a graph to help Konfuzd make his decision. |
|  | 8. | Chapter Review and Practice Test <br> - Help students develop sound study habits. <br> - Many students will graduate high school saying they do not know how to study for math tests. |  |
|  | 9. | Go over Practice Test |  |
|  | 10. | Unit Evaluation |  |

## Similarity and Transformations

| Obective | \# | Daily Topic | Key Ideas |
| :---: | :---: | :---: | :---: |
| s\&S3 Demonstrate an understanding of similarity of polygons. [C, CN, PS, R, V] S\&S4 Draw and interpret scale diagrams of 2-D shapes. [CN, R, T, V] | 1. | Scale Drawings (pg. 4-8) <br> - Determine the scale factor for a given diagram drawn to scale. |  |
|  | 2. | Scale Drawings Con't (pg. 8-11) <br> Determine if a given diagram is proportional to the original 2-D shape and, if it is, state the scale factor. <br> - Draw a diagram to scale that represents an enlargement or reduction of a given 2-D shape |  |
|  | 3. | Applying scale drawings (pg. 12-16) |  |
|  | 4. | Extra Day for Scale drawings |  |
|  | 5. | Similar polygons (Pg. 17-22) <br> - Determine if the polygons in a given pre-sorted set are similar and explain the reasoning. <br> - Draw a polygon similar to a given polygon and explain why the two are similar. |  |
|  | 6. | Similar Triangles (Pg. 23-28) <br> - Solve a given problem that involves a scale diagram by applying the properties of similar triangles <br> - Identify an example in print and electronic media (e.g., newspapers, the Internet) of a scale diagram and interpret the scale factor. |  |
| S\&S5 Demonstrate an understanding of line and rotation symmetry. [C, CN, PS, V] | 7. | Line Symmetry (Pg. 29-33) <br> - Classify a given set of 2-D shapes or designs according to the number of lines of symmetry <br> - Complete a 2-D shape or design given one half of the shape or design and a line of symmetry <br> - Identify the type of symmetry that arises from a given transformation on the Cartesian plane. |  |
|  | 8. | Rotational Symmetry (Pg. 34-37) <br> - Determine if a given 2-D shape or design has rotation symmetry about the point at the centre of the shape or design and, if it does, state the order and angle of rotation. <br> - Rotate a given 2-D shape about a vertex and draw the resulting image. |  |
|  | 9. | Rotational Symmetry con't (Pg. 38-42) <br> - Complete, concretely or pictorially, a given transformation of a 2-D shape on a Cartesian plane, record the coordinates, and describe the type of symmetry that results. <br> - Determine whether or not two given 2-D shapes on the Cartesian plane are related by either rotation or line symmetry. <br> - Draw, on a Cartesian plane, the translation image of a given shape using a given translation rule, such as R2, U3, label each vertex and its corresponding ordered pair, and describe why the translation does not result in line or rotation symmetry. <br> - Create or provide a piece of artwork that demonstrates line and rotation symmetry, and identify the line(s) of symmetry and the order and angle of rotation. |  |
|  | 10. | Chapter Review and Practice Test <br> - Help students develop sound study habits. <br> - Many students will graduate high school saying they do not know how to study for math tests. |  |
|  | 11. | Go over Practice Test |  |
|  | 12. | Unit Evaluation |  |

Circle Geometry

| Objective | \# | Daily Topic | Key Ideas |
| :---: | :---: | :---: | :---: |
| This section is not part of the WNCP Objectives. This section reviews the important geometric language needed to be successful in this chapter. | 1. | Geometry Review: Angles \& Triangles (pg. 5-7) <br> - Review terms, supplementary, complementary, angles on a line, Angles in a triangle... | Given: $A E=E D ; \angle B D A=90^{\circ}$. Find $\angle v, \angle x, \&$ <br> $\angle z$. Name <br> $\triangle D E C$ type. |
| s\&s1: sōlve prōblems and justify the solution strategy using circle properties, including: <br> The perpendicular from the center of a circle to a chord bisects the chord. <br> The measure of the central angle is equal to twice the measure of the inscribed angle coming from the same arc <br> The inscribed angles coming from the same arc are congruent <br> A tangent to a circle is perpendicular to the radius at the point of tangency $[C, C N, P S, R, T, V]$ | 2. | Perpendicular Chord Theorem (pg. 8-12) <br> - Solve problems and justify the solution strategy using the perpendicular from the center of a circle to a chord bisects the chord. <br> - Explain the relationship among the center of a circle, a chord, and the perpendicular bisector of the chord. <br> - Provide an example that illustrates the perpendicular from the center of a circle to a chord bisects the chord. | Determine the shortest distance between the center of the circle and the chord $B C$. |
|  | 3. | Inscribed \& Central Angles (pg. 13-18) <br> - Solve problems and justify the solution strategy using the inscribed angles coming from the same arc are congruent. <br> - Provide an example that illustrates the measure of the central angle is equal to twice the measure of the inscribed angle coming from the same arc. <br> - Provide an example that illustrates the inscribed angles coming from the same arc are congruent. | Find $x$ and $y$. |
|  | 4. |  |  |
|  | 5. | Inscribed Quadrilateral Properties (Pg. 19-21) <br> - Solve a given problem involving application of one or more of the circle properties. | Find $x$ and $y$. |
|  | 6. | Tangent Properties (Pg. 22-26) <br> - Solve problems and justify the solution strategy using a tangent to a circle is perpendicular to the radius at the point of tangency. <br> - Provide an example that illustrates a tangent to a circle is perpendicular to the radius at the point of tangency. | $U$ and $T$ are points of tangency. Determine the length of RS and $\angle R T S$. |
|  | 7. | Extra Practice (Pg. 27-28) <br> - Solve a given problem involving application of one or more of the circle properties. |  |
|  | 8. | Chapter Review and Practice Test <br> - Help students develop sound study habits. <br> - Many students will graduate high school saying they do not know how to study for math tests. |  |
|  | 9. | Go over Practice Test |  |
|  | 10. | Unit Evaluation |  |

## Probability and Statistics

| Objectives | \# | Daily Topic |
| :---: | :---: | :---: |
| Data Analysis <br> S\&P1 describe the effect of <br> - Bias <br> - Use of language <br> - Ethics <br> - Cost <br> - Time and timing <br> - Privacy <br> - Cultural sensitivity on the collection of data | 1. | Collecting The Data You Want: Questioning and Surveys: Part 1. Pages 4-7 |
|  | 2. | Collecting The Data You Want: Questioning and Surveys: Part 2. Pages 8-11 |
| S\&P2 select and defend the choice of using either a population or a sample of a population to answer a question | 3. | Questioning the Right Group: Pages 12-20 Two days. |
| S\&P4 demonstrate an understanding of the role of probability in society | 5. | Using Probability to Make Decisions: Pages 21-28 |
|  | 6. | Think Before You Predict: Pages 29-32 |
|  | 7. | What is the Right Sample Size? Pages 33-39 |
| S\&P3 develop and implement a project plan for the collection, display, and analysis of data by formulating a question for investigation: <br> - Choosing a data collection method that includes social considerations <br> - Selecting a population or a sample <br> - Collecting the data <br> - Displaying the collected data in an appropriate manner <br> - Drawing conclusions to answer the question | 8. | Chapter Project: Pages 40-52 <br> - 2-3 classes. |

