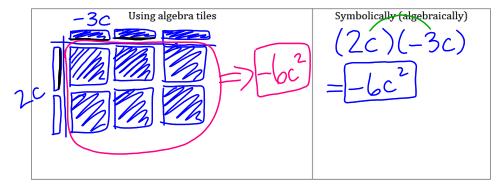
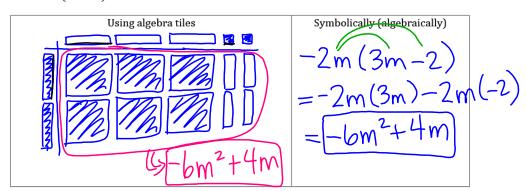
5.5 - Multiplying a Polynomial by a Monomial

When we multiply something by say, 4, we are creating four sets of that item. For example, 4×3 means $\frac{1}{1}$ The same is true when we multiply a polynomial by a constant – we are creating multiple sets of that polynomial.

Ex. 1: $3(-2x^2)$ "3 groups of $-2x^2$ "	060 000
Using algebra tiles	Symbolically (algebraically)
2 3 -6x ²)	$3(-2\chi^2)$ $= -6\chi^2$


What if we have a negative constant out front? When using algebra tiles, we ignore the negative at first, but then we have to ______ the tiles to their opposite sign.

Ex. 2: $\bigcirc 2(-2y^2+y-2)$ "2 groups of $-2y^2+y-2$, then flip signs"


Using algebra tiles

Symbolically (algebraically) $-2(-2y^2+y-2)$ $+ 4 = -2(-2y^2) - 2(y) - 2(-2)$ $+ 4 = -2(-2y^2) - 2(y) - 2(-2)$ $+ 4 = -2(-2y^2) - 2(y) - 2(-2)$ $+ 4 = -2(-2y^2) - 2(y) - 2(-2)$

Ex. 3: (2c)(-3c)

Ex. 4: -2m(3m-2)

(a)
$$(-5y)(10xy + 4)$$

$$= -50yxy - 20y$$
$$= (-50xy^{2} - 20y)$$

(b)
$$(-3p + |r+1)(-4r)$$

= $(-4r)^2 - 4r^2$