GRADE 9 MATH - LINEAR RELATIONS

KEY TERMS:

•linear relation

linear equation

•numerical coefficient

variablesextrapolate

•constant

interpolate

Students will generalize a pattern arising from a problem-solving context, using a linear equation, and verify by substitution.

Students will graph a linear relation, analyze the graph, and interpolate or extrapolate to solve problems.

Key Ideas

• Many pictorial and written patterns can be represented using a table of values or a linear equation.

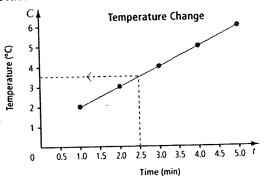
The pentagonal table can seat five people. The tables can be connected to form longer tables.

Number of Tables, t	Number of Sides, s	Pattern: Multiply t by 3 and Add 2
1	5	5
2	8	8
3	11	11

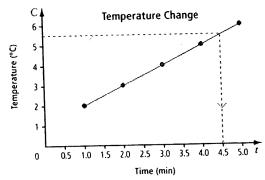
The equation that models the pattern is s = 3t + 2.

• Linear equations can be verified by substituting values.

Substitute t = 3 into the equation:

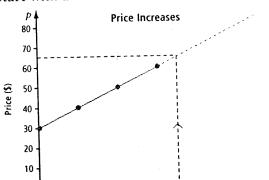

$$s = 3(3) + 2$$

$$= 9 + 2$$


The calculated value matches the value in the table.

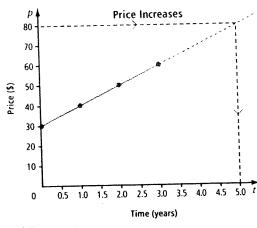
Key Ideas

- On a graph, you can use a line to interpolate values between known values.
 - Start with a known value for x.



• Start with a known value for y.

- On a graph, you can extend a line to extrapolate values beyond known values.
 - Use a dashed line to extend the line beyond the known x-value or y-value.
 - Start with a known value for x.

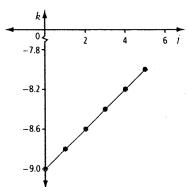

1.0 1.5 2.0

2.5 3.0 3.5

Time (years)

• Start with a known value for y.

 Interpolation and extrapolation should be used only when it is reasonable to have values between or beyond the values on a graph.


4.0 4.5

Key Ideas

0

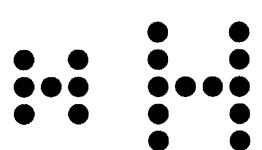
- You can graph a linear relation represented by an equation.
 - Use the equation to make a table of values.
 - Graph using the coordinate pairs in the table. The graph of a linear relation forms a straight line.

$k = \frac{j}{5} - 9$		
j	k	
0	-9.0	
1	-8.8	
2	-8.6	
3	-8.4	
4	-8.2	
5	-8.0	

- The graph of a linear relation can form a horizontal or a vertical line.
- You can use graphs to solve problems by interpolating or extrapolating values.

gr 9 math review linear relations

Multiple Choice


Identify the choice that best completes the statement or answers the question.

Use the figures to answer the following question(s).

Figure 1

Figure 2

Figure 3

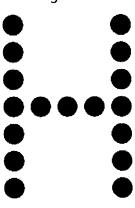


Figure Number

2

3

1. Which table of values represents the number of dots in the pattern?

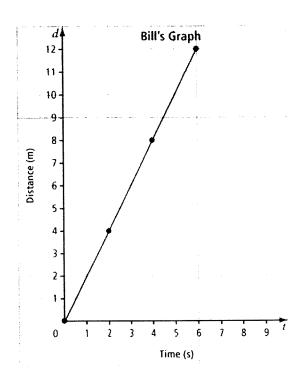
Figure Number	Number of Dots
1	7
2	12
3	17

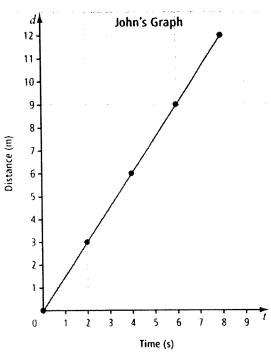
a

Figure Number	Number of Dots
ı	7
2	10
3	13

c.

Figure Number	Number of Dots
1	6
2	10
3	14


Number


of Dots

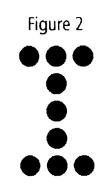
10

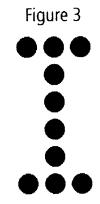
15

Use the graphs to answer the following question(s).

2. Which linear relation represents John's graph?

a. d = 1.5t


c. d = 3t


b. d = 1.5t + 1.5

d. d = 3t + 3

Use the figures to answer the following question(s).

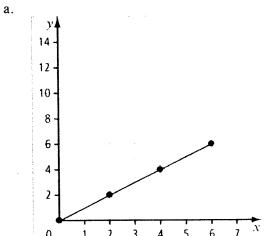
Figure 1		

3. Which table of values describes the pattern?

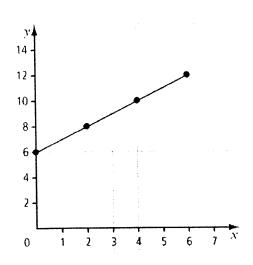
Figure Number	Number of Dots
1	8
2	9
3	10

٠	

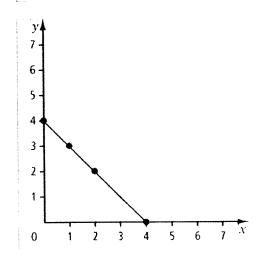
Figure Number	Number of Dots
1	8
2	10
3	12

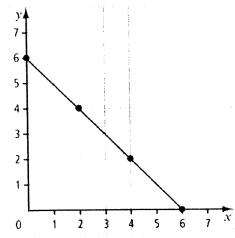

Figure Number	Number of Dots
1	10
2	12
3	14

c	

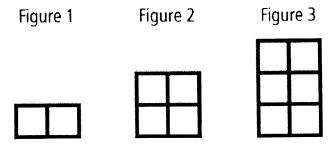

Figure Number	Number of Dots
l	4
2	5
3	6

4. Which graph represents the following table of values?


4 X	<i>y</i>
6	0
4	2
2	4
0	6

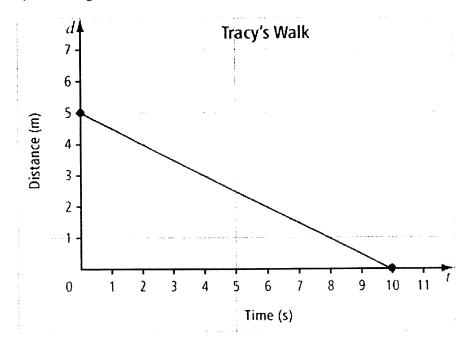

c.

b.



d.

Short Answer


5. Each square in the pattern has a side length of 1 cm.

- a) Create a table comparing the figure number with the area for that figure. Extend the table to include the next two figures in the pattern.
- b) What is a linear equation that represents this pattern?
- 6. Theater tickets cost \$65.00 each. Complete the table of values and develop a linear equation that relates the cost to the number of tickets.

	Number of Tickets, n	Cost, c (\$)
ĺ	1	
	2	
ĺ	3	
	4	
	5	

- 7. Tracy is walking near a motion detector.
 - a) How far was Tracy from the sensor when she began walking?
 - b) Was she walking toward or away from the motion sensor at the time?
 - c) How long did it take her to reach the motion sensor?

- 8. a) What is the linear equation of the vertical line that passes through the point (3, 4)?
 - b) What is the linear equation of the horizontal line that passes through the point (3, 4)?

m	•	A
ω	٠	$\overline{}$

9. A long distance phone plan charges a flat fee of \$8 per month, plus \$0.10 per minute of call time.

a) Write a linear equation to represent the relationship between the number of minutes of call time, n, and the total monthly cost, c.

b) Graph the linear relation using 0 min as the first point and 80 min as the last.

c) What is the total cost for a month where the call time is 75 min?

Problem

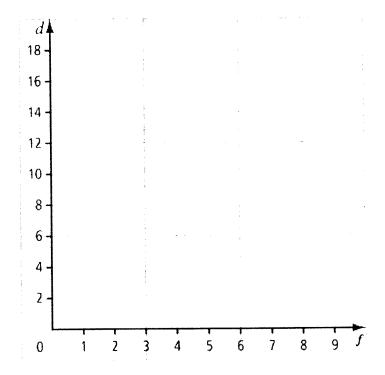
10. Abby and Braden are tiling a floor. All tiles are square. The figure below shows how many tiles Abby and Braden put in place, by the hour.

1 h

2 h

3 h

a) Complete the table of values.

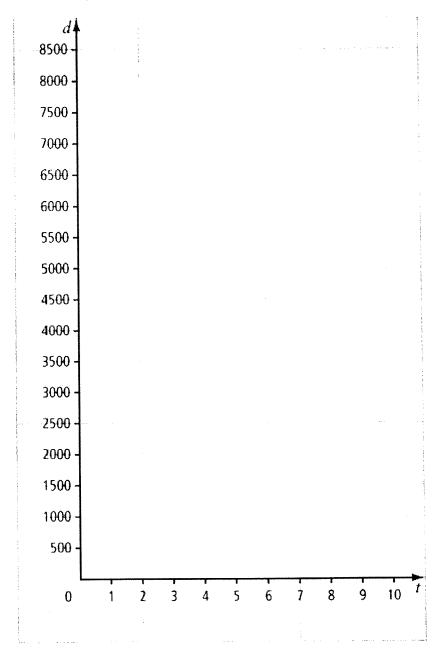

Hours Worked 1	2	3	4	5
Number of Light Grey Tiles				
Number of Dark Grey Tiles				

- b) How many light grey tiles have been laid in five h?
- c) If there are 60 dark grey tiles to be laid, how long did it take to complete the work?

11. The letter Z is constructed from dots. The first three diagrams are shown below.

Figure 2 Figure 2

- a) Draw the next diagram.
- b) Create a table of values showing the relationship between the figure number, f, and the number of dots,
- d, for the first four figures.
- c) Graph the table of values.


- d) Describe the relationship between the figure number and the number of dots.
- e) What is the equation that represents the relationship between the figure number, f, and the number of dots, d?
- f) How many dots would be in Figure 8?

- 12. A computer repair shop charges a flat fee of \$50.00 plus \$25.00 per half hour of labour required to complete the repair.
 - a) Create a table of values showing the relationship between the required repair time, t, and the cost of repairs, c, from 0 to 4 h, in half-hour intervals.
 - b) Draw a graph of the table of values.

c) What is the cost of a repair that took 3 h to complete?

d) Extrapolate from the graph to determine how many hours were required for a repair costing \$400.

- 13. A jet flies from Toronto to Rome. Its flight can be modelled by the linear equation d = 7200 800t, where d is the distance, in kilometres, from Rome and t is the time, in hours.
 - a) Graph the linear relation.
 - b) How long does it take to fly 4000 km?

