Exponent Laws

Exponent of 1 (Section 2.1)

Any number to the power of 1 equals the number
Example: $2^{1}=2$
$3^{1}=3$
$128^{1}=128$

Zero Exponent Law (Section 2.2)

Any number to the power of 0 equals 1
Examples: $2^{0}=1$

$$
\begin{aligned}
& (-2)^{0}=1 \\
& -2^{0}=-1
\end{aligned}
$$

Product of Powers Law (Section 2.4)

Remember - Product means multiply!
When multiplying powers with the same base, keep the base and add exponents to form a single power.

$$
a^{m} \times a^{n}=a^{m+n}
$$

Ex. $\quad 2^{3} \times 2^{2}=2^{3+2}$

$$
=2^{5}
$$

$$
=32
$$

Quotient of Powers Law (Section 2.4)
Remember - Quotient means divide!
When dividing powers with the same base, keep the base and subtract exponents to form a single power.

$$
a^{m} \div a^{n}=a^{m-n}
$$

$$
\text { Ex. } \quad \begin{aligned}
2^{3} \div 2^{2} & =2^{3-2} \\
& =2^{1} \\
& =2
\end{aligned}
$$

Power of a Power Law (Section 2.5)

When you have a power of a power, keep the base and multiply exponents to form a single power.

$$
\begin{aligned}
\left(a^{m}\right)^{n} & =a^{m \times n} \\
\text { Ex. } \quad\left(2^{3}\right)^{2} & =2^{3 \times 2} \\
& =2^{6} \\
& =64
\end{aligned}
$$

Power of a Product Law (Section 2.5)

When you have an exponent on the outside of brackets containing a multiplication, apply the exponent to each base inside the brackets. This is just an application of the Power of a Power Law.

$$
(a \times b)^{m}=\left(a^{m} \times b^{m}\right)
$$

Ex. $\quad(2 \times 3)^{2}=\left(2^{2} \times 3^{2}\right)$

$$
=(4 \times 9)
$$

$$
=36
$$

Power of a Quotient Law (Section 2.5)

When you have an exponent on the outside of brackets containing a division, apply the exponent to each base inside the brackets. This is just an application of the Power of a Power Law.

$$
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}
$$

Ex. $\left(\frac{4}{2}\right)^{2}=\frac{4^{2}}{2^{2}}$

$$
=\frac{16}{4}
$$

$$
=4
$$

***** Remember! There is no law that includes adding or subtracting powers!!! STOP! Use order of operations instead!!!

$$
\begin{aligned}
& 2^{2}+2^{3} \\
= & 4+8 \\
= & 12
\end{aligned}
$$

***** Remember! A negative sign that is not inside brackets is not part of the base!!!

$$
(-2)^{2}=4 \quad \text { BUT } \quad-2^{2}=-4
$$

