\qquad
Ch. 2 - Powers and Exponent Laws
Block: \qquad

Chapter 2 Practice Test: Powers and Exponent Laws

Student Self-Assessment

Please fill in the following after completing the practice test and looking at the correct solutions.

Learning Outcomes		Practice Questions	I get all of it	I get it, but made some errors	I get only some of it	I don't get it at all
A1	Demonstrate an understanding of powers with integral bases.	$\# 1-3$				
A4	Explain and apply the order of operations with and without technology.	$\# 4-5$				
A2	Demonstrate an understanding of operations on powers with integral bases and whole number exponents.	$\# 6-10$				

What do you need to work on? What is your plan to ensure you will be successful come test day?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1. (a) Use repeated multiplication to show the difference between 2^{3} and 3^{2}.
(b) Complete the following table:

Power	Base	Exponent	Repeated Multiplication	Standard Form
2^{5}				
$(-3)^{3}$				
			$-(2 \times 2 \times 2 \times 2)$	
	-1	3		

2. A student was told that -2^{3} and $(-2)^{3}$ were the same. Is this correct? Use repeated multiplication and standard form to support your answer.
3. (a) Evaluate the following powers.

-10^{0}	4^{0}

(b) Write 100000000000 as a power of ten.
(c) Write 3700000000000 in scientific notation.
(d) Write 4.157×10^{7} in standard form.
4. Evaluate the following expressions. Show all work.
(a) $\left[(4-1)^{3} \times(3+3)^{5}\right]^{0}$
(b) $4^{2} \times 4+2^{2} \times 2^{3}$
(c) $(6-8)^{5} \div(-4)$
(d) $[(-14)-6]^{2}+11$
5. Both Alyssa and Karen evaluated the following expression. Alyssa's answer was 10 and Karen's answer was -8 . Who is correct if one of the answers is right? Show your work.

$$
\left(-3^{2} \times 2-2\right) \div(-2)
$$

6. (a) Using repeated multiplication, show that $2^{3} \times 2^{4}=2^{7}$
(b) Using repeated multiplication, show that $(-3)^{6} \div(-3)^{4}=(-3)^{2}$
(c) Using repeated multiplication, show that $\left(4^{2}\right)^{3}=4^{6}$
(d) Using repeated multiplication, show that $(2 \times 5)^{2}=2^{2} \times 5^{2}$
7. Simplify the following expressions using exponent laws, but do not evaluate.
(a) $(-2)^{52} \times(-2)^{3}=$
(e) $\left(2^{8}\right)^{4}=$
(b) $10^{14} \times 10^{2}=$
(f) $\left[(-3)^{2}\right]^{6}=$
(c) $5^{7} \div 5^{3}=$
(g) $(12 \div 10)^{4}=$
(d) $\frac{5^{19}}{5^{8}}=$
(h) $\left(\frac{1}{2}\right)^{2}=$
8. Is the value of $\frac{\left[(-21)^{5}\right]^{6}}{\left[(-21)^{2}\right]^{3}}$ positive or negative? Explain why.
9. Simplify, then evaluate $\left[(-3)^{2}\right]^{5} \div\left[(-3)^{3}\right]^{3}-\left[(-3)^{3}\right]^{0}$. Show all work.
10. The student solutions below are full of errors. Write the correct solutions in the table below, showing all work.

a) $\left(3^{2} \times 2^{2}\right)^{3}$	$=\left(6^{4}\right)^{3}$	b) $\left[(-3)^{2}\right]^{3}=(-3)^{5}$
	$=6^{12}$	$=-243$
	$=2176782336$	

Question a)	Question b)	Question e)

Answers to Chapter 2 Practice Test

1. (a) $2^{3}=(2)(2)(2)$ but $3^{2}=(3)(3)$
(b)

Power	Base	Exponent	Repeated Mult.	Standard Form
	2	5	$(2)(2)(2)(2)(2)$	32
	-3	3	$(-3)(-3)(-3)$	-27
-2^{4}	2	4		-16
$(-1)^{3}$			$(-1)(-1)(-1)$	-1

2. $-2^{3}=-(2)(2)(2)=-8$ and $(-2)^{3}=(-2)(-2)(-2)=-8$ so they evaluate to the same thing, but their repeated multiplication is different.
3. (a)

-1	1

(b) 10^{11}
(c) 3.7×10^{12}
(d) 41570000
4. (a) 1
(b) 96
(c) 8
(d) 411
5. Alyssa is correct.
6. (a) $(2)(2)(2) \times(2)(2)(2)(2)=2^{7}$
(b) $\frac{(-(3)(-3)(-(-3)(-3)(-3)(-3)}{(-3)(-3)(-3)(-3)}=(-3)^{2}$
(c) $\left(4^{2}\right)\left(4^{2}\right)\left(4^{2}\right)=(4)(4)(4)(4)(4)(4)=4^{6}$
(d) $(2 \times 5)(2 \times 5)=(2)(2)(5)(5)=2^{2} \times 5^{2}$
7. (a) $(-2)^{55}$
(b) 10^{16}
(c) 5^{4}
(d) 5^{11}
(e) 2^{32}
(f) $(-3)^{12}$
(g) $12^{4} \div 10^{4}$
(h) $\frac{1^{2}}{2^{2}}$
8. It simplifies to $(-21)^{24}$, which is positive since there are an even number of negative numbers being multiplied.
9. -4
10. (a) 46656
(b) 729
(e) 1210000

