Chapter 2 Practice Test: Powers and Exponent Laws

Student Self-Assessment

Please fill in the following <u>after</u> completing the practice test and looking at the correct solutions.

	Learning Outcomes	Practice Questions	l get all of it	I get it, but made some errors	l get only some of it	I don't get it at all
A1	Demonstrate an understanding of powers with integral bases.	#1-3				
A4	Explain and apply the order of operations with and without technology.	#4–5				
A2	Demonstrate an understanding of operations on powers with integral bases and whole number exponents.	#6-10				

What do you need to work on? What is your plan to ensure you will be successful come test day?

- 1. (a) Use repeated multiplication to show the difference between 2^3 and 3^2 .
 - (b) Complete the following table:

Power	Base	Exponent	Repeated Multiplication	Standard Form
25				
(-3) ³				
			- (2 × 2 × 2 × 2)	
	-1	3		

2. A student was told that -2³ and (-2)³ were the same. Is this correct? Use **repeated multiplication** and **standard form** to support your answer.

3. (a) **Evaluate** the following powers.

-10^{0}	4 ⁰

- (b) Write 100 000 000 000 as a **power of ten**.
- (c) Write 3 700 000 000 000 in scientific notation.
- (d) Write 4.157 $\times 10^7$ in **standard form**.

- 4. Evaluate the following expressions. Show all work.
 - (a) $[(4-1)^3 \times (3+3)^5]^0$ (b) $4^2 \times 4 + 2^2 \times 2^3$

(c)
$$(6-8)^5 \div (-4)$$
 (d) $[(-14)-6]^2 + 11$

5. Both Alyssa and Karen evaluated the following expression. Alyssa's answer was 10 and Karen's answer was –8. Who is **correct** if one of the answers is right? Show your work.

$$(-3^2 \times 2 - 2) \div (-2)$$

- 6. (a) Using **repeated multiplication**, show that $2^3 \times 2^4 = 2^7$
 - (b) Using **repeated multiplication**, show that $(-3)^6 \div (-3)^4 = (-3)^2$
 - (c) Using **repeated multiplication**, show that $(4^2)^3 = 4^6$
 - (d) Using **repeated multiplication**, show that $(2 \times 5)^2 = 2^2 \times 5^2$

7. **Simplify** the following expressions using exponent laws, but **do not evaluate**.

(a)
$$(-2)^{52} \times (-2)^3 =$$
 (e) $(2^8)^4 =$

(b)
$$10^{14} \times 10^2 =$$
 (f) $[(-3)^2]^6 =$

(c)
$$5^7 \div 5^3 =$$
 (g) $(12 \div 10)^4 =$

(d)
$$\frac{5^{19}}{5^8} =$$
 (h) $\left(\frac{1}{2}\right)^2 =$

8. Is the value of
$$\frac{\left[(-21)^5\right]^6}{\left[(-21)^2\right]^3}$$
 positive or negative? Explain why.

9. Simplify, then evaluate $[(-3)^2]^5 \div [(-3)^3]^3 - [(-3)^3]^0$. Show all work.

10. The student solutions below are full of errors. Write the **correct solutions** in the table below, showing all work.

Question a)	Question b)	Question e)

Answers to Chapter 2 Practice Test

1. (a)
$$2^3 = (2)(2)(2)$$
 but $3^2 = (3)(3)$

Power	Base	Exponent	Repeated Mult.	Standard Form
	2	5	(2)(2)(2)(2)(2)	32
	-3	3	(-3)(-3)(-3)	-27
-24	2	4		-16
(-1) ³			(-1)(-1)(-1)	-1

- 2. $-2^3 = -(2)(2)(2) = -8$ and $(-2)^3 = (-2)(-2)(-2) = -8$ so they evaluate to the same thing, but their repeated multiplication is different.
- 3. (a) -1 1 (b) 10^{11} (c) 3.7×10^{12} (d) 41570000
- 4. (a) 1 (b) 96 (c) 8
 - (d) 411
- 5. Alyssa is correct.
- 6. (a) $(2)(2)(2) \times (2)(2)(2)(2) = 2^7$

(b)
$$\frac{(-3)(-3)(-3)(-3)(-3)(-3)}{(-3)(-3)(-3)(-3)} = (-3)^2$$

- (c) $(4^2)(4^2)(4^2) = (4)(4)(4)(4)(4)(4) = 4^6$ (d) $(2 \times 5)(2 \times 5) = (2)(2)(5)(5) = 2^2 \times 5^2$
- 7. (a) $(-2)^{55}$ (b) 10^{16} (c) 5^4 (d) 5^{11} (e) 2^{32} (f) $(-3)^{12}$ (g) $12^4 \div 10^4$ (h) $\frac{1^2}{2^2}$
- 8. It simplifies to (-21)²⁴, which is positive since there are an even number of negative numbers being multiplied.
- 9. -4

10. (a) 46656 (b) 729 (e) 1 210 000