Polynomials and Algebra Tiles

This booklet belongs to:_____

LESSON #	DATE	QUESTIONS FROM	Questions that I
		NOTES	find difficult
1.		Pg.	
2.		Pg.	
3.		Pg.	
4.		Pg.	
5.		Pg.	
6.		Pg.	
7.		Pg.	
8.		Pg.	
9.		Pg.	
10.		Pg.	
11.		REVIEW	
12.		TEST	

© © © Find detailed homework solutions at <u>www.mathbeacon.ca/guidebooks/#math9</u> © © ©

Your teacher has important instructions for you to write down below.

1

Chapter 2:Polynomials.

IRP	No	Daily Topic	Key Ideas
B5 demonstrate an understanding of polynomials (limited to polynomials of degree less than or equal to 2)	1.	Introduction to Modeling Polynomials Write the expression for a given model of a polynomial Describe a situation for a given first degree polynomial expression 	Write an expression to represent any number in the following pattern, 2,4,6,8,
[C, CN, R, V]	2.	 The language of Polynomials Create a concrete model or a pictorial representation for a given polynomial expression Write the expression for a given model of a polynomial Identify the variables, degree, number of terms, and coefficients, including the constant term, of a given simplified polynomial expression 	Given $5x^2 + 3x - 4$ name the variable(s), constant(s), coefficient(s), terms, type of polynomial and degree of the polynomial. Model $-2x^2 + x - 5$ using algebra tiles
	3. 4.	 Extra Day to Practice Collecting Like Terms Match equivalent polynomial expressions given in simplified form (e.g., 4x - 3x + 2 is equivalent to -3x + 4x + 2) 	Which polynomials can be represented by the same set of algebra tiles? A. $7x - 4 + 3x^2$ B. $-7x + 4 + 3x^2$ C. $3y^2 - 7y + 4$ D. $3x^2 - 7x + 4$
	5.	Extra Day to Practice	
B6 model, record, and explain the operations of addition and subtraction of polynomial expressions, concretely, pictorially, and symbolically (limited to polynomials of degree less than or equal to 2) [C, CN, PS, R, V]	6.	 Adding and subtracting Polynomials Model addition of two given polynomial expressions concretely or pictorially and record the process symbolically Model subtraction of two given polynomial expressions concretely or pictorially and record the process symbolically Apply a personal strategy for addition and subtraction of given polynomial expressions, and record the process symbolically Identify equivalent polynomial expressions from a given set of polynomial expressions, including pictorial and symbolic representations Identify the error(s) in a given simplification of a given polynomial expression 	Simplify: $(-x^{2} + 7x + 9) + (6x^{2} - 5)$ Simplify $(3x_{5} - 5x + 1) - (x_{5} - x + 3)$ using algebra tiles.
B7 model, record, and explain the operations of multiplication and division of polynomial expressions (limited to polynomials of degree less than or equal to 2) by monomials, concretely, pictorially, and symbolically [C, CN, R, V]	7. 8.	Multiplying Polynomials by Constants or Monomials • Model multiplication of a given polynomial expression by a given monomial concretely or pictorially and record the process symbolically • Apply a personal strategy for multiplication and division of a given polynomial expression by a given monomial • Provide examples of equivalent polynomial expressions • Identify the error(s) in a given simplification of a given polynomial expression • Dividing Polynomials by Constants or Monomials • Model division of a given polynomial expression by a given monomial	Use algebra tiles to complete the multiplication 3(2x + 3) = Correct any errors if applicable. -2x(-4x + 2 - 11z) $=8x^2 + 4x + 22z$ Simplify. $\frac{4x^2 - 16x}{x} =$
	9.	 symbolically Apply a personal strategy for multiplication and division of a given polynomial expression by a given monomial Provide examples of equivalent polynomial expressions Identify the error(s) in a given simplification of a given polynomial expression Chapter Review and Practice Test Help students develop sound study habits. Many students will graduate high school saying they do not know how 	
	10	 Many students will graduate nigh school saying they do not know now to study for math tests. Go over Practice Test 	
	10.	Unit Evaluation	
	11.		

2

	Definition	Example
Binomial	A polynomial consisting of two terms.	2 <i>b</i> ³ + 5
Coefficient	A number in front of a variable.	$2b^3 + 5$ The 2 is the coefficient.
Constant	A number that does not change.	2b ³ +5 The 5 is the constant.
Distribution Property	A direction to multiply the term in front of the brackets by each of the terms inside the brackets.	$2m(3m-5n) = 6m^2 - 10mn$
Equation	A statement where two expressions are equal.	$2b^3 + 5 = 2b + 1$ is an equation. $A = \pi r^2$ Is an equation.
Evaluate	Determine the answer.	Evaluate 2+3→5
Expand	Same meaning as distribution property	$2m(3m-5n)=6m^2-10mn$
Exponent	A raised number that tells you how many times to multiply the base by itself.	$2b^3 + 5$ The 3 is the exponent.
Expression	A collection of variables and/or numbers that represents a quantity.	$2b^3+5$ or πr^2
Inequality	A statement where two expressions are not equal.	$6 > 1$, $2x + 3 < 5$ And $x \neq 4$ are examples of inequalities.
Inverse operation	Inverse operations have opposite effects.	(+,–) are inverse operations.
Like Term	Terms that have the same variables to the same exponents.	5m,3m and m are like terms. 2n & 5m are not like terms.
Monomial	An algebraic expression consisting of one term.	2b³ or 5
Polynomial	An algebraic expression made up of one or more monomials.	
Simplify	A direction to combine or reduce terms.	4m+5m-3m can be simplified to 6m.
Solve	A direction to determine the value of a variable.	The solution to $x + 8 = 18$ is x=10.
Substitute	A direction to replace the variable(s) with specific values.	If 3 were substituted for x in $2x + 1$, the value of the expression would be 7.
Term	A quantity. A constant, a variable or the product of a constant and a variable could represent this quantity.	Given $2b^3 + 5$, the terms are $2b^3$ and 5
Trinomial	A polynomial consisting of three terms.	$2b^3 + 2m + 5$
Variable	A letter that is used to represent a number.	2b ³ + 5 The b is the variable.

Key Terms

€Introduction Polynomials by Modeling Patterns€

This opening exercise is designed to challenge your ability to see and explain patterns. Explain each pattern in the most efficient way possible.

1. Pattern #1:

1 st box	2 nd box	3 rd box	4 th box	8 th box	100 th box
É	ŚŚ	ÉÉÉ	ÉÉÉÉ		

Explain how to find the number of apples in any box.

2. Pattern #2:

1 st box	2 nd box €	3 rd box ≰⊈	4 th box €€€	5 th box éééé	100 th box
---------------------	--------------------------	----------------------------------	-----------------------------------	------------------------------------	-----------------------

Explain how to find the number of apples in any box.

3. Pattern #3:

1 st box €€	2 nd box €€€	3 rd box €€€€	4 th box ÉÉÉÉÉ	8 th box	100 th box
----------------------------------	-----------------------------------	-----------------------------	------------------------------	---------------------	-----------------------

Explain how to find the number of apples in any box.

4. Pattern #4:

1 st box	2 nd box	3 rd box	4 th box	8 th box	100 th box
É	ÉÉ	ÉÉÉ	ÉÉÉÉ		
É	ÉÉ	ÉÉÉ	ÉÉÉÉ		

Explain how to find the number of apples in any box.

5. Pattern #5:

1 st box	2 nd box	3 rd box	4 th box	8 th box	100 th box
É	ÉÉ	ÉÉÉ	ÉÉÉÉ		
É	ÉÉ	ÉÉÉ	ÉÉÉÉ		
É	ÉÉ	ÉÉÉ	ÉÉÉÉ		

Explain how to find the number of apples in any box.

6. Pattern #6:

1 st box	2 nd box	3 rd box	4 th box	8 th box	100 th box
ŚŚ	ŚŚŚ	ŚŚŚ	ŚŚŚŚŚ		
Ć	ŚŚ	ŚŚŚ	ÉÉÉÉ		

Explain how to find the number of apples in any box.

7. Pattern #7:

1 st box	2 nd box	3 rd box	4 th box	8 th box	100 th box
ÉÉÉ	ÉÉÉÉ	É É É É É	É É É É É É		
Ś	ŚŚ	ÉÉÉ	Ú Ú Ú Ú		

Explain how to find the number of apples in any box.

8. Pattern #8:

1 st box	2 nd box	3 rd box	4 th box	8 th box	100 th box
É	ÉÉ	ÉÉÉ	ÉÉÉÉ		
Ú Ć Ć Ć Ć	ĆĆĆĆĆĆ	É É É É É É É	ÉÉÉÉÉÉÉÉ		
É	Ű Ű	ú ú ú	ÉÉÉÉ		

Explain how to find the number of apples in any box.

9. Pattern #9:

1 st box	2 nd box	3 rd box	4 th box	8 th box	100 th box
É	ŚŚ	ÉÉÉ	ÉÉÉÉ		
	ŚŚ	ŚŚŚ	<u>ÉÉÉÉ</u>		
		ÉÉÉ	ÉÉÉÉ		
			ÉÉÉÉ		

Explain how to find the number of apples in **any box**.

10. Pattern #10:

1 st box	2 nd box	3 rd box	4 th box	8 th box	100 th box	
ćć	Ú ÚÚ ÚÚ	É ÉÉÉ ÉÉÉ ÉÉÉ	Ú ÚÚÚÚ ÚÚÚÚ ÚÚÚÚ			
Explain how to find the number of apples in any box .						

11. Pattern #11:

1 st box	2 nd box	3 rd box	4 th box	8 th box	100 th box
É	ÉÉ	ÉÉÉ	ÉÉÉÉ		
É	ŚŚ	ÉÉÉ	ÉÉÉÉ		
	ÉÉ	ÉÉÉ	ÉÉÉÉ		
		ÉÉÉ	ÉÉÉÉ		
			ÉÉÉÉ		

Explain how to find the number of apples in any box.

12. Pattern #12:

1 st box	2 nd box	3 rd box	4 th box	8 th box	100 th box
	ÉÉ	ÉÉÉ	ÉÉÉÉ		
		ÉÉÉ	ŚŚŚŚ		
			ŚŚŚŚ		

Explain how to find the number of apples in any box.

13. Pattern #13:

1 st box	2 nd box	3 rd box	4 th box	8 th box	100 th box
	É	ÉÉ	ÉÉÉ		
	ÉÉ	ÉÉÉ	ÉÉÉÉ		
		ÉÉÉ	ÉÉÉÉ		
			ÉÉÉÉ		

Explain how to find the number of apples in any box.

Challenge #: One of the primary aims of Mathematics is to increase efficiency in the world. Read each statement below and write an efficient expression to represent the number of apples in each box. Use "n" instead of "box #".

14. Five more than the box number.	15. Ten more than the box number.	16. Six less than the box number.
17. Double the box number.	18. The quotient of the box number and 3.	19. The product of the box number and 6.
20. 4 times the box number, decreased by 2.	21. 3 more than double the box number.	22. 5 less than 3 times the box number.

6

•		•		
23. More than	24. Double a number.	25. The sum of	26. The difference of	27. A multiple of
28. Decreased by	29. Increased by	30. Less than	31. The quotient of	32. The product of

What operation $(+, -, \times, \div)$ should be used to represent the following words.

Write an expression.

 33. Mikkidee makes \$8 an hour working at McDonalds. How much will he be paid for the following number of hours? A. 11 h/week? B. 20 h/week? C. 30 h/week? D. Write an expression to represent his earnings after any number of hours. 	 34. Feeshalut likes fishing. He sells every fish that he catches for \$30. How muc will he make after selling th following number of fish? A. 7 fish? B. 10 fish? C. Write an expression to represent how much he gets paid selling salmon. 		 35. Judy sells a cob of corn for 50 cents. How much would she make after selling the following number of cobs of corn? A. 17 cobs? B. 50 cobs? C. Write an expression to represent how much she makes selling cobs of corn.
 36. Challenge #1: Tspray sells funny books for \$20 and batty books for \$30. A. Write an expression to represent how much money he makes after selling f funny books and b batty books. 		be found by mark and ac exam mark. A. Write an ex	#2: A final mark in Math 9 can taking 80% of a student's class Iding it to 20% of their final spression using c for class mark am mark to represent a math
B. How much does he make if he sells 5 funny books and 7 batty books?			lywanna's final mark if his class mark nis exam mark was 80%.

Copyright Mathbeacon2008-2015. License Agreement Per student/Per Year: This content may be used before but not after June 2016.

write an expression and evaluate each expression.					
38. Tspray sells funny books for\$20 and batty books for \$30.	39. Whydee sells softball bats for\$50 and softballs for \$4.	40. Jayloo sells crabs for \$5 and shrimp for \$2.			
A. Write an expression to represent how much money he makes selling books. 20f+30b	A. Write an expression for how much she makes selling softball equipment.	A. Write an expression to represent how much he makes selling seafood.			
B. How much does he make if he sells 5 funny books and 7 batty books? 20(5) +30(7)=\$310	B. How much does she make if she sells 3 bats and 12 softballs?	B. How much does he make if he sells 22 crabs and 31 shrimp?			
C. How much does he make if he sells 1 funny book and 6 batty books? 20(1) +30(6)=\$200	C. How much does she make if she sells 5 bats and 8 softballs?	C. How much does he make if he sells 8 crabs and 8 shrimp?			
	i				

Write an expression and evaluate each expression.

Calculating final grades

41.	A math 9 final grade can be found by taking 80% of a student's class mark and adding it to 20% of their final exam mark.	42.	A math 11 final grade can be found by taking 70% of a student's class mark and adding it to 30% of their final exam mark.	43.	A math 12 final grade can be found by taking 60% of a student's class mark and adding it to 40% of their final exam mark.
Α.	Write an expression using c for class mark and e for exam mark to represent a student's final mark. 0.80c + 0.2e=final mark	Α.	Write an expression using c for class mark and e for exam mark to represent a student's final mark.	Α.	Write an expression using c for class mark and e for exam mark to represent a student's final mark.
B.	Determine Billywanna's final mark if his class mark was 70% and his exam mark was 80%. o.8oc + o.2e=final mark o.8o(70) + o.2(80)=72%	B.	Determine Normital's final mark if his class mark was 60% and his exam mark was 40%.	B.	Determine Numeralia's final mark if his class mark was 90% and his exam mark was 70%.
С.	Determine Purdy Close's final mark if her class mark was 40% and his exam mark was 90%. o.8oc + 0.2e=final mark o.8o(40) + 0.2(90)=50%	С.	Determine Beerent's final mark if his class mark was 40% and his exam mark was 90%.	С.	Determine Billywanna's final mark if his class mark was 40% and his exam mark was 90%.

Think of a real life scenario that could be explained by

44.	\$4x
45.	(x+42) lbs
46.	$(x+2)m^{2}$

Challenge #3: Mark Randilyn's Quiz. Give him a mark out of 15 and correct his errors. Do not look at the answer key until you have marked his quiz and given him a score out of 15.

Name: Randilyn Monteif

Expressions Quiz

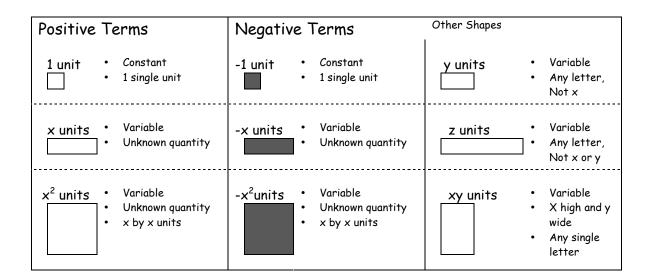
47. Ten less than a number.	48 . A number divided by four.	49 . The difference of a number and 12.
10-n	4/n	n-12
50. Three more than twice a number is 15.	51. Nine more than twice a number.	52. The sum of a number and 3 times that number.
	2(n+9)	times that number.
2 n +3		n+3n
53. Four less than three times a number.	54. Six less than five times a number is 12.	55. The product of a number and 3 times that number.
4-3n	5n-6=12	n3
56. The sum of a number and 4.	57. One-fifth of a number.	58. One half of a number.
n+4	n/5	 2n
50 The modult of a number and 7	(0) The quotient of a number and 5	
59 . The product of a number and 7.	60. The quotient of a number and 5.	61. I wo-mins of a number.
7 n	n/5	2n 5

62. What is Randilyn's score out of 15?_____

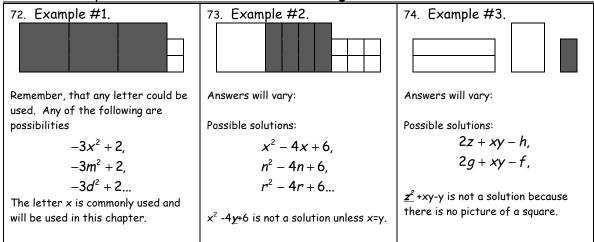
The Language of Polynomials

Why are letters and numbers helpful in mathematics?

63. Describe in words the shap	pes below.	64. Describe ir	n words the shapes below.
Your explanation:		Your explanation	on:
·			
Wouldn't be great if there w			the above pictures. 67. Use y², y , numbers & the
65. Use x , x, numbers a the + sign to represent the shapes below.	1	epresent the	+ sign to represent the shapes below.
Explanation:	Explanation:		Explanation:

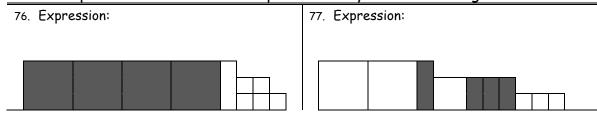

68. Go back to the first two pictures and write a mathematical expression for them. Which method do you prefer; words or numbers and letters? Why?

Draw a picture to represent each group of letters and numbers.

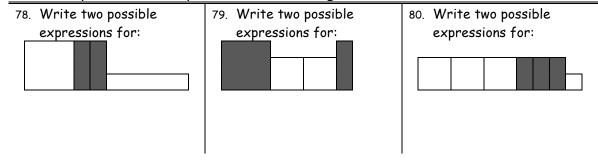

69. $4x^2 + x$	70. $2x^2 + 3$	71. How could you draw a
		picture to represent
		negative numbers? $2x^2 - 3$

Introduction to Algebra Tiles

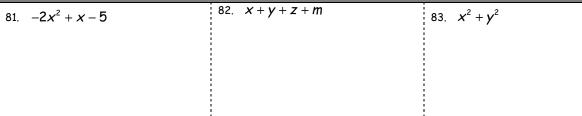
Algebra tiles can be used to model or represent variables and integers.



Write an expression for each of the following



- 75. Important: Any letters can be used to represent the above shapes. There is only one rule to remember:
- Do not use the same letter to represent two different shapes.
- Why is this a good idea?


Write an expression that could be represented by each set of algebra tiles?

Write an expression to explain each set of algebra tiles?

Model each expression using algebra tiles. (Draw each expression with algebra tiles.)

New Terms Challenge #4: The terms that follow are important to being able to communicate in mathematics. The English-speaking world has agreed to these words. Can you match these new words before we discuss them? Match the letter to the appropriate number.

84What is the 3 called in $3x^4 + 5$	A. Variable: An unknown quantity represented by a letter.
85What is the x called in $3x^4 + 5$	 B. Term: A product of letters and/or numbers including single variables or constants.
86What is the 5 called in $3x^4 + 5$	C. Binomial: An expression with two terms
87What is $3x^4$ called in $3x^4 + 5$	D. Monomial: An expression with one term
882y is an example.	E. Constant: A number on its own that does not change
893 <i>x</i> ⁴ + 5 is an example.	F. Trinomial: An expression with three terms
90. $x + y + z$ is an example	 G. Polynomial: An expression made up of one or more monomials.
913 $x^4 + 5 \& x + y + z$ are examples.	 H. Coefficient: A number in front of a variable that does not change

Polynomial Language

Using numbers and letters makes explaining mathematical situations in life more convenient. For this reason, it is important that everyone calls the letters and numbers the same names. This allows scientists all over the world to be able to understand each other when they talk about common problems.

Fill in the following definitions

92. Variable: 3x+2	
93. Coefficient: 3 x+2	
94. Constant: 3x+ <u>2</u>	
95. Term: <u>3x</u> +2	Term: A product of letters and/or numbers including single variables or constants. Terms are separated by + or - signs. • $3x$ and 2 are both terms as is $4x^2y$ and $4(a+b)$.
	 3x+2 has two terms but 2(x+3) is just one term since 2 and (x+3) are being multiplied.
96. Polynomial: See 97,98,99 below.	
97. Monomial: 2a	
98. Binomial: 2a+b	
99. Trinomial: 2a+b+c	
100. Degree of a term	 The sum of the exponents in a single term. 3x², 4x¹y¹, 3xy Each has degree 2. 5x⁴, 7x²y², 5x³y Each has degree 4.
101. Degree of a polynomial	 The highest sum of the exponents in a single term Determined by the term with the highest degree. 5x⁴ + 3x² + 1 And 5x² + 3x⁴ + 1 both have degree 4. 5x⁴y⁴ + 3²⁰ Has degree 8.

102. Name the	103. Name the	104. Name the	105. Name the
variable(s) in the	constant(s) in the	coefficient(s) in	variable(s) in the
expression,	expression,	the expression,	expression,
3m+2n+5.	5m+n+2.	4x+n+2.	2m+2-ab.
106. Name the	107. Name the	108. Name the	109. Name the
coefficient(s) in	variable(s) in the	constant(s) in the	constant(s) in the
the expression,	expression,	expression,	expression,
2x-n+2.	2m ³ +5-b.	-4+n ² +x.	3m ⁵ +2n+5.

Determine the selected number(s) or letter(s).

Determine the number of terms in each expression.

110. 2m+4ab+8	111. 4(a+b)+ c	112. 2a+b+c	113. 2ab+5abcd
114. 5a+b	115. 8a -5(b+c)	116. 2(m+4ab)+8	117. 5(a+b+c)

What kind of polynomials are these?

118. 2a+2b	119. 2xy+6x-4	120. 2x+y	121. 2x+y+4
122. 5 x	123. 8y+5x-4	124. 2a+c+b	125. 2ab+3b+abc
	1		

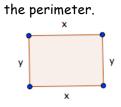
126. Challenge #5: Write two different polynomial expressions that have the same degree as $-5x^2 + x$ with coefficients 7 and -2 and constant 5. 127. Challenge #6: Which of the following is equivalent to 4x - 5x² + 3:
A. 5x² - 4x + 3
B. -5x² + 4x + 3

C.
$$-5x^2 + 4x - 3$$

128. Write two different polynomial expressions that have the same degree as $-5x^2 + x$ with coefficients 7 and -2 and constant 5. Possible solution:	129. Write two different first- degree binomials with a negative coefficient and a negative constant.	130. Write two different trinomials with 4 different variables where every term is of degree 2.
$\frac{7x^2 - 2x + 5}{2}$ (Degree is 2)		
-2x ² +7x+5 (Degree is 2)		

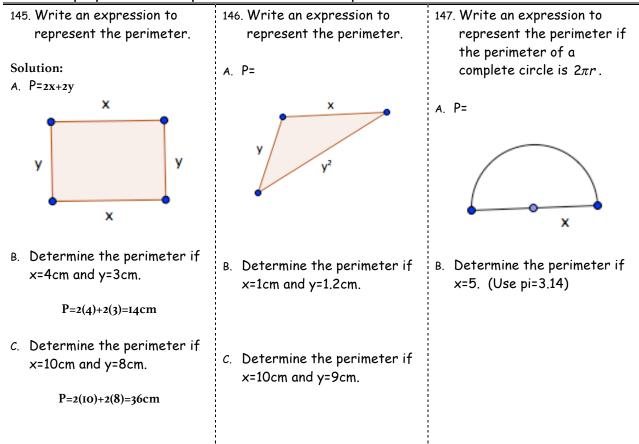
Create a polynomial.

Write a polynomial to match to each description.


131. Write two different binomial expressions where the constant is bigger than the coefficient.	132. Write a binomial expression where the coefficient of the term with the largest degree is negative and the coefficient of the other term is smaller than the first.	133. Write a polynomial expression with 4 different variables where every term is of degree 1.

Equivalent polynomials.

134. Which of the following is	135. Which of the following is	136. Which of the following
equivalent to $4x - 5x^2 + 3$:	equivalent to $-1y + 1x^2$:	is/are equivalent to
Possible Strategy Solution	A. $x^2 - y$	$-xy+(-2y^2):$
Rearrange $_{4\times - 5\times^2 + 3} \rightarrow _{-5\times^2 + 4\times + 3}$	B. $-1x^2 + 1y$	A. $2y^2 - xy$
A. $5x^2 - 4x + 3$	$Cx^2 + y$	B. $-2y^2 - xy$
B. $-5x^2 + 4x + 3$		$C. -2xy - y^2$
C. $-5x^2 + 4x - 3$		
By observation B is the only equivalent trinomial.		

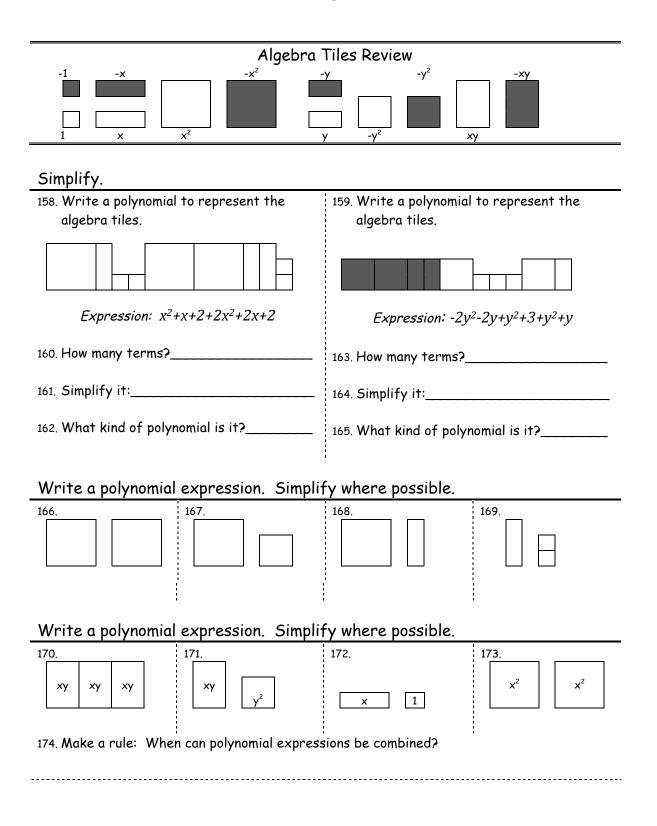

Equivalent polynomials.		
137. Which polynomials can be	138. Which polynomials can be	139. Which polynomials can be
represented by the same	represented by the same	represented by the same
set of algebra tiles?	set of algebra tiles?	set of algebra tiles?
A. $7x - 4 + 3x^2$	A. $-x^2 - y + x$	A. $z^2 - w - 2$
B. $-7x + 4 + 3x^2$	B. $-m^2 - m + n$	B. $-y - 2 + x^2$
C. $3y^2 - 7y + 4$	C. $-x^2 - x + y$	C. $x^2 - y - 2$
D. $3x^2 - 7x + 4$	D. $-z + y - z^2$	D. $w^2 - w - 2$
 140. For each polynomial	 141. For each polynomial	 142. For each polynomial
represented by the	represented by the	represented by the
algebra tiles state the	algebra tiles state the	algebra tiles state the
following: A. Degree: B. Constant: C. Type of polynomial:	following: A. Degree: B. Coefficient(s): C. Number of terms:	following: A. Degree: B. Constant: C. Type of polynomial:
143. Challenge #7: Write an ex	xpression to 144. Challeng	1 e #8: Evaluate –5m² + 4m – 4n , if
represent the perimeter.	m=2 and	n=-1.

Equivalent polynomials.

A. P=

B. Determine the perimeter if x=4cm and y=3cm.

Write a polynomial to represent each area or perimeter.


Write an expression and evaluate.

 148. Many bank machines only distribute \$20 bills. If you do not have an account at the bank there will be \$1.50 charge. A. Write an expression to represent how much money will be debited from any person's account if they have to pay the \$1.50. 	 149. Manny works at Donnie's Donuts and earns \$9 per hour. He gets \$13.50 for every hour he works above his regular eight hour shift. A. Write an expression to represent how much money Manny could make on any given day.
B. How many twenty-dollar bills does the computer need to know to give out if \$241.50 will be removed from Sally's account?	B. How much money will Manny make if he works 10 hours?
	C. How much will he make if he works 12.5 hours?

150. Evaluate $-5m^{2} + 4m - 4n$, if m=2 and n=-1. Solution: $-5m^{2} + 4m - 4n$ $= -5(2)^{2} + 4(2) - 4(-1)$ = -20 + 8 - (-4) = -8	151. Evaluate 3m ² + 4m - 4n , if m=-2 and n=1.	152. Evaluate 3m ² – n ² , if m=10 and n=-1.	153. Evaluate -m ² + m - 4n , if m=2 and n=-1.
154. Evaluate if m=10. $\frac{2}{5}m - \frac{1}{4}m =$ Solution: Substitute m=10 for m in the $\frac{2}{5}m - \frac{1}{4}m =$ $\frac{2}{5}\left(\frac{10}{1}\right) - \frac{1}{4}\left(\frac{10}{1}\right) =$ $\frac{20}{5} - \frac{10}{4} =$ 4 - 2.5 = 1.5	155. Evaluate if m=-40. $\frac{2m}{5} - \frac{m}{4} =$	156. Evaluate if m=-20. $\frac{3}{5}m - \frac{3}{8}m =$	157. Evaluate if m=-1. $\frac{5}{m} - \frac{3}{8m} =$

Evaluate each polynomial.

Collecting Like Terms

175. Challenge #9: Simplify.	Write down the steps to simplify the set of algebra tiles.
 176. Challenge #10: Which of the following can be combined. How do you know? A. 5 D. 3xy 	What must be true of each term to combine them?
B. x ² E5ух C7х F. 0.2x ²	
Terms that can be combined are called like terms.	
177. Challenge #11: Simplify by combining. $5x^2 + 4x - 3 - x + 2 - 3x^2$	Draw a picture or write down the steps to simplify this polynomial.

Write a polynomial expression. Simplify where possible.

Definition: Like Terms \rightarrow Use the examples to create a definition

Like Terms	Unlike terms	
 3,6,7.2 & 0.5 3m,-1.3m, m & 0.75m , x², 4x², -2x², 0.2x² 3xy,-5yx, 	 3m & 2n 2m & 5 5x² & 4x 3xy,5xz, 	
178. Like Terms: Terms are like terms if they have thevariables and each corresponding variable is raised to theexponent.		
179. yx is the same as so always write yx as180. $y + z + x$ is the same as so always write $y + z + x$ as181. $x + 5 + x^2$ is the same as so always write $x + 5 + x^2$ as		

1

Write a polynomial expression. Simplify where possible.

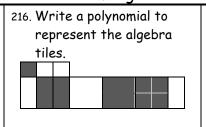
Are the following like terms?

186. Are these like terms?	187. Are thes	se like terms?	188. Are these li	ke terms?
	ху	ух	x ²	-x ²

State whether each pair of monomials are like terms. (Yes or No?)

189. 5m, 4m	190. 5m, 4n	191. 5, 3m	192. 7, 2.5	193. 5mn, 4nm
194. 5, 3x	195. 5xn, 4xm	196. 5x, 4xy	197. 5n, 4n	198. x, 0.002x
199. 5m², 4m	200.5m²n, 4nm	201. 5m²n, 4nm²	202.7b, -0.5b	203.5m ³ n ² , 4n ³ m ²
204.×5, 3×	205. 5x²n, 4x²n	206.yx, 4xy	207. 5nx², 4n²x	2087n ² , 2.5nn

Collect like terms.


	210. $9x^2 + 5 + 7x + 2 + 3x$	211. $11x + 3x^2 - 7x + 2x^2 + x$
Possible solution Strategy: 5x ² -3x ² =2x ²		
4x-x=3x		1 1 1
-3+2=-I		
$=2x^{2}+3x-I$		

Simplify by collecting like terms.

212.
$$-4x^2 + x + 6x^2 - 2x + 5x - 3x^2$$
 213. $-x + 2 + 4x - 7 - x^2 + 2x^2$ 214. $-5x - 7x - 9 - 2 - 3x$

Write an expression to explain each set of algebra tiles? Simplify if possible.

215. Write a polynomial to	210
represent the algebra	
tiles.	

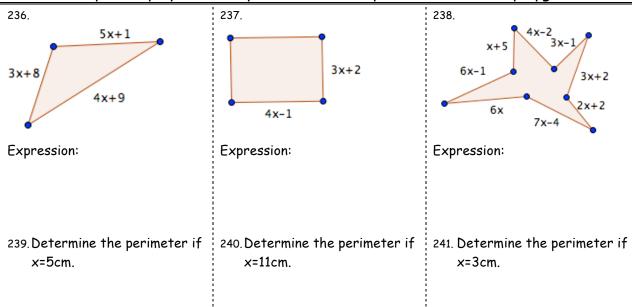
217. Write a polynomial to represent the algebra tiles.

Mark the following right or wrong. Circle the errors and correct them.

218. $-4m + 10m^2 + 5m^2 - 5m$	219. 3m² + 9m – 5m² – 5m	220. $2m^2 + 4n^3 - 2m^2 - 5n^3$
Answer:	Answer:	Answer:
15m² + 9m	2m² + 4m	-n ³

Find the missing values.

y		
221. What would have to be true	222. Determine the value for a	223. What would have to be true
if $x + y + 9$ is equivalent to	if 5x - 7y + 3x + ay is	if $5x + 3y + 2z$ is
y + z + 9?	equivalent to 8x + 4y .	equivalent to $5x + 6m + 2z$
		?
224 Determine the value for a	225 Determine the value for a	226. What would have to be true
if $-3x^2 - 7x + ax^2 - 4x$ is	if $3x^2 - ax - 8x^2 - 2x$ is	if $15x + 30y + 12z$ is
equivalent to $9x^2 - 11x$.	equivalent to	equivalent to
	$-4x^2+5x-x^2-3x$.	15 <i>x</i> + 30 <i>y</i> + 4 <i>n</i> ?
	i de la constante de	1


Simplify by collecting like terms.

227. $3m^2 - m^2 + 7nm - 5m^2 - mn$	228. 7 <i>n</i> + 4 – <i>n</i> – 5 – 5 <i>n</i>	229. $2n - m^2 - 3n - 2m^2 + 5n$
230. <i>n</i> – 7 <i>mn</i> – 3 <i>mn</i> + <i>mn</i> + 5 <i>n</i>	231. $1 - 6m - 2n - (-5m) - n - 3$	232. $nm^2 - n + 3m^2n - n^2m + n$

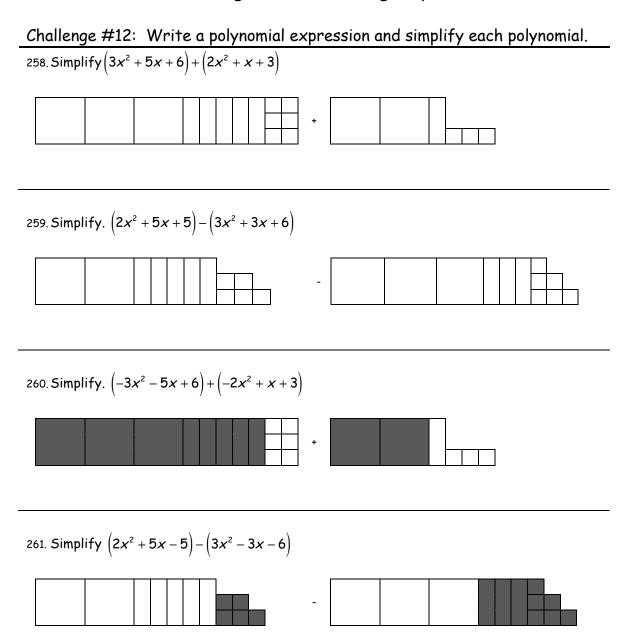
(Answers will vary)

233. Write a polynomial that	234. Write a polynomial of	235. Write a polynomial that has
simplifies to $2m^2 - n + 4m$.	degree two that simplifies	the coefficients 6, -5, -4, 3
	to 2n.	& 2 that simplifies to 2n.
	1	1

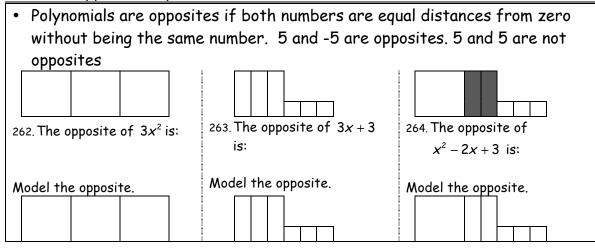
Write a simplified polynomial expression for the perimeter of each polygon.

242. 4 <i>m</i> + 3 <i>n</i> + 5 <i>m</i> – 5 <i>n</i>	243. 4 – 3n + 15 – 5n	244. m + 3n – 2m – 5n
245. 4 <i>m</i> – 3 <i>n</i> + <i>m</i> + 5 <i>n</i>	246. 14n + 7n + 5m – 2n	247. 3nm + 2n + 5mn – 8nm
248. $4m + 3m^2 + 5m^2 - 5m$	249. 4 <i>n³ - m²n</i> + 5 <i>m²n</i> - 5 <i>n³</i>	250. 4 <i>m – m² – n</i> + 3 <i>m</i> ²

Simplify each polynomial.


Mark the following right or wrong. Circle the errors and correct them.

251. 4 <i>mn</i> – 4 <i>n</i> + 2 <i>m</i> + 5 <i>nm</i>	252. mn² + 7n + 5n – 2mn²	253. 3m³ – 2n + 5n – 8n
Answer:	Answer:	Answer:
Already simplified	12 <i>n</i> – 1mn ²	3m³ + 5n


Evaluate.

254.Evaluate if m=10.	255.Evaluate if m=-40.	256.Evaluate if m=-20.	257.Evaluate if m=-1
$\frac{2}{5}m-\frac{1}{4}m=$	$\frac{2m}{5} - \frac{m}{4} =$	$\frac{3}{5}m-\frac{3}{8}m=$	$\frac{5}{m} - \frac{3}{8m} =$
Possible Solution:			
Substitute m=10 for m			
$\frac{2}{5}\left(\frac{10}{1}\right) - \frac{1}{4}\left(\frac{10}{1}\right) =$			
$\frac{20}{20} - \frac{10}{10} =$			
5 4			
4 - 2.5 = 1.5			

Adding and Subtracting Polynomials

Definition: Opposite Polynomials

Read each method and tick the strategy you like best.

	Method #1	Method #2
265. $(3x^2 + 5x + 6) + (2x^2 + x + 3)$	$\frac{3x^{2} + 5x + 6}{6} + 2x^{2} + x + 3$ Collect like terms. $5x^{2} + 6x + 9$	$3x^{2} + 5x + 6$ + 2x^{2} + x + 3 5x^{2} + 6x + 9
266. $(2x^2 + 5x + 5) - (3x^2 + 3x + 6)$	$(2x^{2} + 5x + 5) - (3x^{2} + 3x + 6)$ Add the opposite $(2x^{2} + 5x + 5) + (-3x^{2} - 3x - 6)$ $2x^{2} + 5x + 5 - 3x^{2} - 3x - 6$ Collect like terms. $-x^{2} + 2x - 1$	$ \begin{array}{r} 2x^2 + 5x + 5 \\ \underline{- 3x^2 + 3x + 6} \\ -x^2 + 2x - 1 \end{array} $
267. $(-3x^2 - 5x + 6) + (-2x^2 + x + 3)$	$\frac{-3x^{2}-5x+6}{\text{Collect like terms.}} - 2x^{2} + x + 3$ $-5x^{2} - 4x + 9$	$-3x^{2} - 5x + 6$ $+ -2x^{2} + x + 3$ $-5x^{2} - 4x + 9$
$268. \left(2x^2 + 5x - 5\right) - \left(3x^2 - 3x - 6\right)$	$(2x^{2} + 5x - 5) - (3x^{2} - 3x - 6)$ Add the opposite $(2x^{2} + 5x - 5) + (-3x^{2} + 3x + 6)$ $\frac{2x^{2} + 5x - 5}{\text{Collect like terms.}} - x^{2} + 8x + 1$	$ \frac{2x^2 + 5x - 5}{-3x^2 - 3x - 6} - x^2 + 8x + 1 $

Perform the indicated operation.

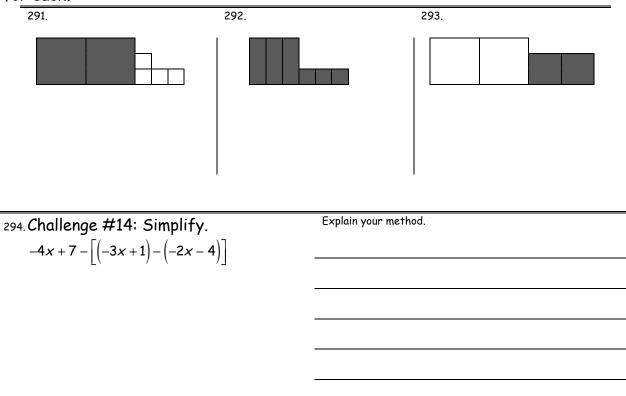
$$269. (-x^{2} + 7x + 9) - (6x^{2} - 5) = 270. (x^{2} + 3x) + (-2x^{2} + 3x - 4) = 271. (-21x^{2} + 9) - (-11x^{2} - 3x)$$

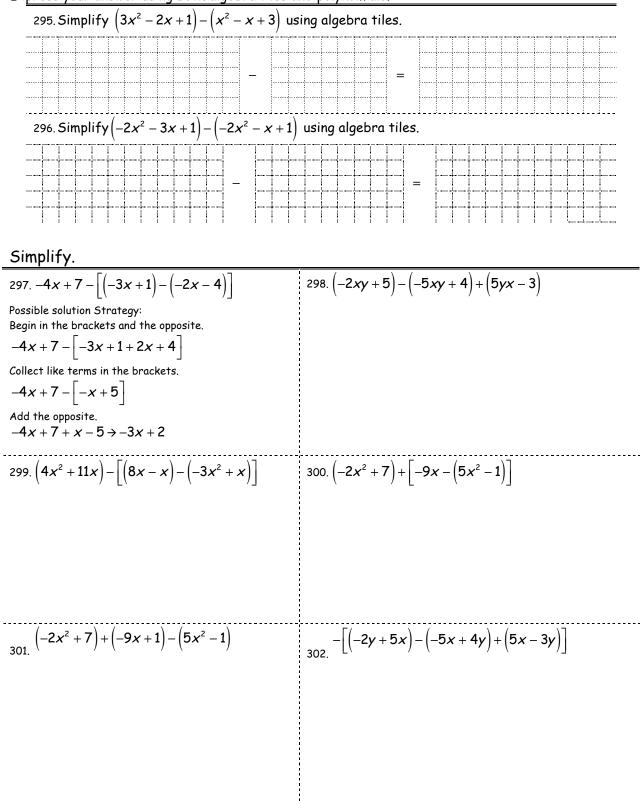
$$272. (-2x^{2} + 5) + (-3x^{2} + 1) = 273. (x^{2} + 3x + 1) - (-2x^{2} - 3x) = 274. \text{Right or wrong? Fix it.} \\ (-x^{2} - 4x + 3) + (-5x + 3) = -x^{2} - 4x + 3) + (-5x + 3) = -x^{2} - 4x + 3 - 5x + 3 = -x^{2} - 5x + 3 = -x$$

Perform the indicated operation.

275. $3x^2 - 5x + 6 \\ + -2x^2 + x - 3$	$276. \frac{2x^2 - 5x + 7}{-3x^2 + 3x - 6}$	277. $ \begin{array}{r} 13x^2 - 5x + 6 \\ + 2x^2 - 9x + 3 \end{array} $
$5x^2 - 9x + 4$ $7x^2 - 6$	$ \begin{array}{r} x^2 + 60 \\ + -20x^2 + 5x - 3 \end{array} $	280.Right or wrong? Fix it. -11x + 10 8x ² - 3x - 6 -8x2-8x+16
281. Challenge #13: Simplify u strategy. (3x ² + 5x + 6) - (-2		d.

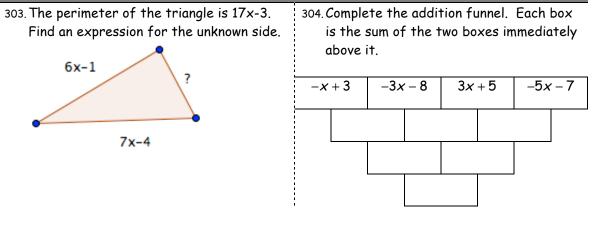
Copyright Mathbeacon2008-2015. License Agreement Per student/Per Year: This content may be used before but not after June 2016. 27


	<u> </u>	
$282.(3x^2 + 5x - 6) - (-2x^2 + x - 9)$	283.(c + 5) + (11 + 8c) =	284.(-9 + q) - (1 - 9q) =
Possible Solution Strategy: =3x ² + 5x - 6 + 2x ² - x + 9 =5x ² +4x+3		
285. (5x ² - 3x) - (-3x + 5x ²) =	286.(6v ² + 2v) - (7v - v ²) =	287. (8j ² - 4j) + (-9j - 23j ²) =
	1	


Combine like terms using any strategy

State the opposite of each polynomial.

$288.\left(-2x^2+3x\right)$	$289x^2 + 3x - 1$	290. $-(2x^2 - 3x)$


Draw the opposite of each set of algebra tiles and write a polynomial expression for each.

Express your answer using both algebra tiles and polynomials.

Evaluate each situation.

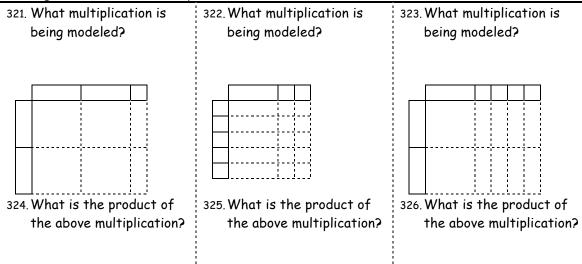
305. Sally works for Kabooki Cabs in the summer	311. Jason and Timothy both work for
to earn money. She rents the pedal bike on	Mathbeacon Plumbing. They each charge
Thursdays for \$75 and on Fridays for \$125.	\$65 for service calls. Jason charges
	5
She charges people \$1/min on Thursdays and	\$80/hr and Timothy charges \$70/hr.
\$1.50/min on Fridays for bike tours around	
her city.	
	312. Write an expression to represent Jason's
The expression $(x - 75) + (1.5y - 125)$	earnings on any given day.
represents her earnings for any given Thursday	
and Friday.	
	313. Write an expression to represent Timothy's
306. What does x represent?	· · · ·
soo. What does x represent?	earnings on any given day.
307. What does y represent?	
308.Calculate her earnings last weekend if she	
billed 220 minutes on Thursday and 178	314. Write an expression to represent the
minutes on Friday.	possible revenue for the company on any
	given day.
	given ady.
200 Nouthworld the identity to change \$1.25 (min	
309. Next week she is going to charge \$1.25/min	
on both Thursday and Friday. Write a new	
expression to represent her new billing idea.	315. Calculate the total revenue if Jason made 3
	service calls and worked 7 hours and timothy
	made 4 service calls and worked 6 hours.
310. Calculate her new earnings if she billed 398	
minutes on Thursday and Friday.	

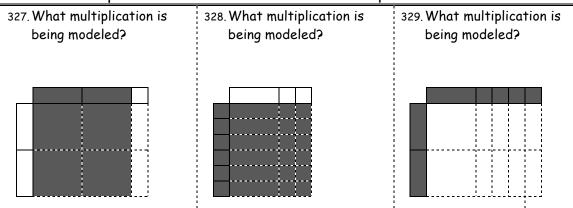
Multiplying Polynomials by Constants or Monomials

Challenge #15:

316. What does 3(2x+3) equal?

Consider this interpretation: (2x+3)+(2x+3)+(2x+3)


Is it true? Can it be simplified?


317. Can you think of another way of coming to the same equivalent expression without repetitive adding?

Use the algebra tiles and complete the multiplication.

318. $3(2x+3) =$	319. $3(3x) =$	320. $x(2x) =$

Use algebra tiles to find the product.

Write a multiplication statement and answer the question.

What multiplication is being modeled?

t two po + 4 <i>x</i> ?	olynomia	ls multiply	∙ to give	1	What tu 8 <i>x</i> ² + 6.	vo polyn x?	omials m	ultiply t	o g	ive	:
 		;;;;				 - - - - - - - - - - - - - - - -			Ŷ		

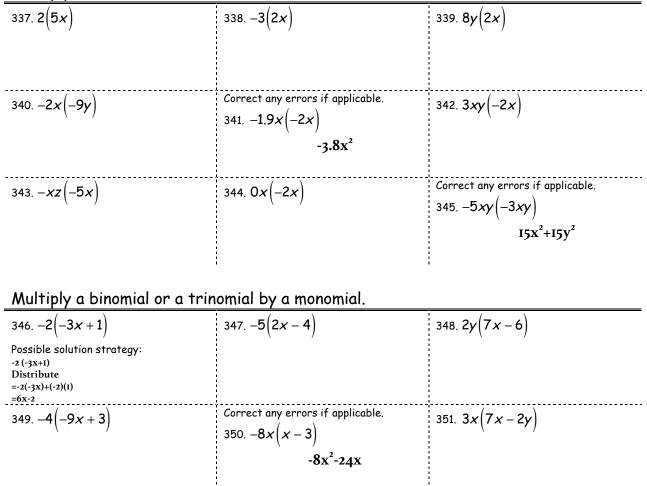
Write a multiplication statement to represent the algebra tiles.

332.	333.
The Distributive Property	
334. Challenge #16: Expand.	Write down the steps to complete the problem.
-2(-3x+1)	

Correct any errors if applicable.

 $8x^{2}+4x+22z$

33


354. -2x(-4x+2-11z)

3			odel $-2(-3x+1)$ and complete the ultiplication.								33					(-4 ati		2) d	anc	d co	om	ple	te	th	e				
		mu	114	JIIC	.ai	ion	•								1	nu	ուե	JIIC	αΠ	on									
••••••	ŀ	<u>.</u>				¦					 	 	 	 							 								
							[Ĩ								
		l	l																										
																					1								
	ļ	ļ			ļ	ļ					 	 	 	 							 								 ļ

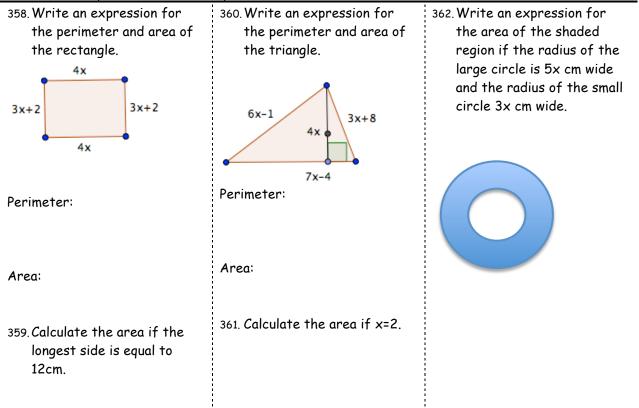
Model each polynomial.

Multiply two monomials.

 $352.7x\left(5x+\frac{4y}{7}-3\right)$

Copyright Mathbeacon2008-2015. License Agreement Per student/Per Year: This content may be used before but not after June 2016.

 $353. \frac{1}{2} x \Big(16 x - 4 y - z \Big)$

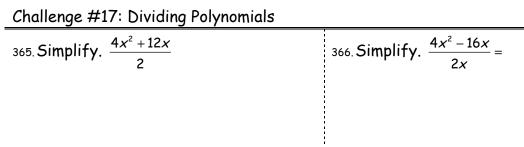

Equivalent expansions

355. Which of the following are	356. Which of the following are	357. Which of the following are
equivalent to $3(5x+1)$?	equivalent to $-2(-x+4)$?	equivalent to $-5(x-2)$?
A. $(5x+1)+(5x+1)+(5x+1)$	<i>A</i> . 2 <i>x</i> + 8	<i>A</i> 5 <i>x</i> + 10
	в. 2(x-4)	в. –5 <i>х</i> – 2
$\mathbf{B}_{1} = \mathbf{I} \mathbf{J} \mathbf{X} + \mathbf{I}$		<i>c</i> . –5 <i>x</i> – 10
<i>c</i> . $2(5x+1)+(5x+1)$	c. $2x - 4$	D. $-3(x-2)-2(x-2)$
	\mathbf{U}	
$\mathbf{D}_{\mathbf{r}} = \mathbf{I} \mathbf{J} \mathbf{x} + \mathbf{J}$	$E. -\Big(-\boldsymbol{x}+4\Big)-\Big(-\boldsymbol{x}+4\Big)$	E. $2(x-2)-7(x-2)-5(x-2)$

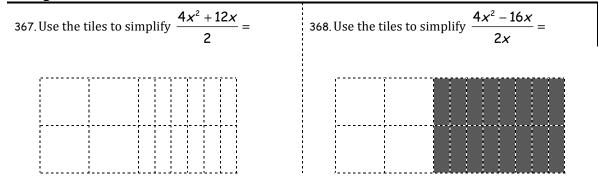
Perimeter and Area Reminder

Rectangle	Triangle	Circle
P=2I+2w	P = a + b + c	$P = 2\pi r$
A = lw	$A = \frac{bh}{2}$	$A = \pi r^2$

Write an expression for the perimeter and area.

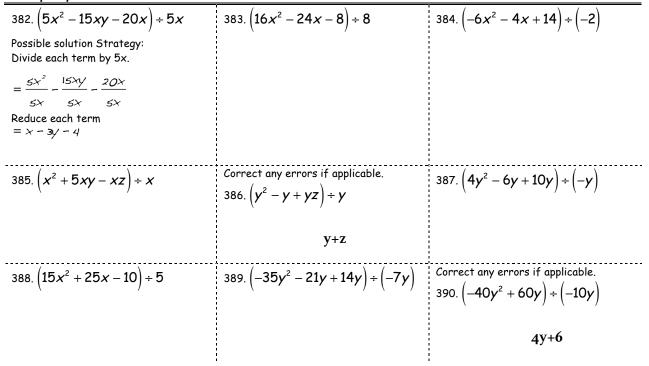

Copyright Mathbeacon2008-2015. License Agreement Per student/Per Year: This content may be used before but not after June 2016. 34

Visit www.mathbeacon.ca for detailed solutions. Last modified July $30^{\mbox{\tiny thm}}$ 2015

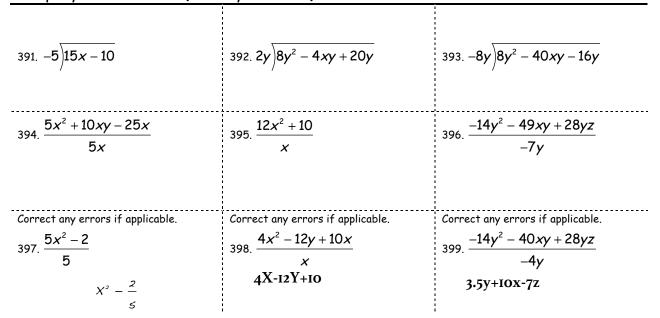

Write a polynomial expression.

363. A rectangular prism has the following	364. A rectangular prism has the following
dimensions; $w = x$, $l = 2$, $h = 3x$.	dimensions; $w = x + 1$, $l = 3$, $h = 2x$.
Determine an expression for the	Determine an expression for the
total surface area of the rectangular	total surface area of the rectangular
prism.	prism.
•	

Challenge #18:

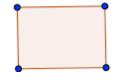

Copyright Mathbeacon2008-2015. License Agreement Per student/Per Year: This content may be used before but not after June 2016. 36

Dividing Polynomials by Constants and Monomials

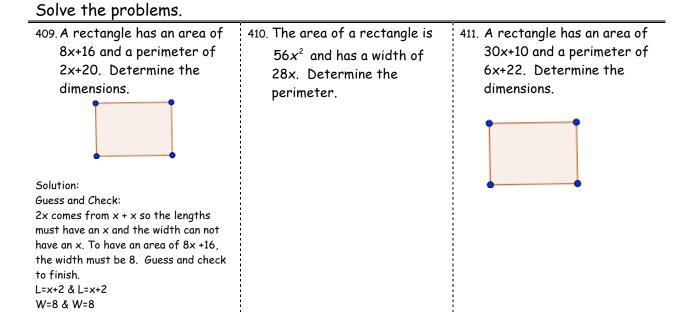

Use algebra tiles to simplif	y the polynomi	al.	
369. Use the tiles to show $\frac{2x^2}{2}$	$\frac{20x}{x} =$	370. Use the tiles	to show $\frac{-6x^2 + 12x}{-3x + 6} =$
Simplify or write "AR" (already	<u>reduced).</u>		
$371\frac{35x^2}{5}$	372. $\frac{14x^2}{x}$		$373. \frac{-34x}{7}$
374. $\frac{55x^2}{-11x}$	$375. \frac{4x^2z}{xz}$		$376. \frac{24\gamma^2 z}{-4\gamma^2 z}$
377. $\frac{4}{3}x^2 \div 2x$	378. 1.44 <i>x</i> ² ÷ (-1	1.2 <i>x</i>)	$379. \frac{256x^2}{-49} \div \frac{-16x}{7}$
380. Challenge #19: Which c	livision statem	ents are true?	
			$\frac{x+4}{2} = x+2$ e. $\frac{2x+4}{2} = x+4$
381. Challenge #20: Simplify (5x ² - 15xy - 20x) ÷ 5x		Explain how to simp	lify the challenge.
$(3^{-1})^{-1}$			

Use algebra tiles to simplify the polynomial.

Simplify.


Simplify or write "AR" (already reduced).

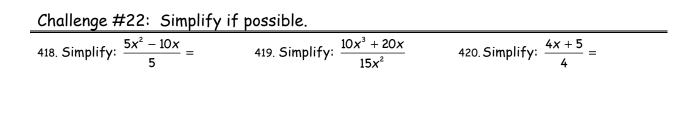
400. Soh Rong is convinced that $2x = x^2$. You want to help him understand. Explain the truth in two different ways.

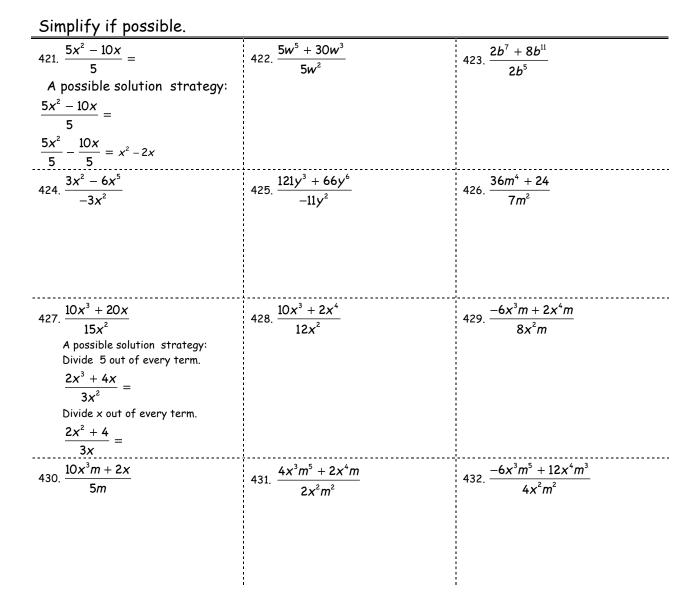

Challenge #21:

- 401. The area of a rectangle is $24w^2$ and has a width of 6w. Write an expression to represent the length.
- 402. A rectangle has an area of 8x+16 and a perimeter of 2x+20. Determine the dimensions.

Use any strategy to solve these problems.

ese any smaregy reserve n		
403. State the dimensions of two possible rectangles that could have an area of	404. The area of a square is 16x² cm².	405. The area of a rectangle is $2x + 10 \text{ cm}^2$. If one of the side lengths is increased by
$4x^2 + 12 \text{ cm}^2$.	A. What is the length of one of the sides?	7, the new area would be $2x + 24$ cm ² . Find the original dimensions.
A.		
В.	B. If the area is multiplied by 100 how big are the new side lengths?	
406. The area of a rectangle is $24w^2$ and has a width of 6w. Write an expression to represent the length.	407. The perimeter of a rectangle is 20x+8 with a width of 5x+2. Determine the length.	408. The area of a rectangle is $50x^2 + 5x$ and has a width of 5x. Determine the perimeter.
Solution: A=Iw 24w ² =I(6w) $\frac{24\omega^{2}}{\omega\omega} = I \rightarrow 4w \text{ cm}$		


Simplify or write "AR" (already reduced).


Correct any errors if applicable. 412. $12x\left(x+\frac{3y}{4x}\right)$	$413. \ \frac{3x}{4} \left(8x - \frac{4y}{3x}\right)$	$414\frac{7x^2}{5} \left(10 - \frac{15y}{7x}\right)$
Multiply. 12x ² + $\frac{12xy}{16x^2}$		
Reduce. $12x^2 + \frac{3y}{4x}$		

Determine the greatest common factor.

<u> </u>		
415. 8 <i>x</i> ² ,10 <i>x</i> y,4 <i>x</i>	416. 24 <i>x</i> ,12 <i>x</i> ,36 <i>xz</i>	417. 20y ² ,5y,4yz
	1	1

Extension: Reducing Polynomial Fractions

Copyright Mathbeacon2008-2015. License Agreement Per student/Per Year: This content may be used before but not after June 2016. 41

Extension: Binomial by a Binomial

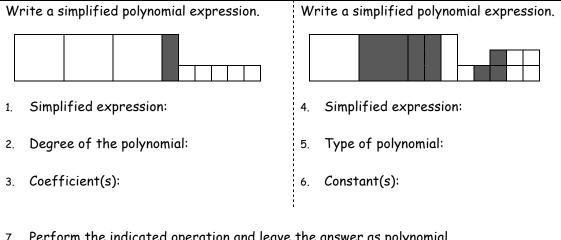
Question: What is a	Question: What is a binomial?		What do you think expands to?
Challenge #23:			
433.Expand: x(x+4)=	434. Expand	d: 2(x + 4) =	435. Show why (x+2)(x+4) = x ² +6x+8
436.Expand (a + 1)(a - 2).	Write down th challenge to th	e steps to solve the ne left.
Expand:			
437. (a + 1)(a - 2) = Solution: Multiply. =a(a)+a(-2)+1(a)+1(-2) =a ² -2a+a-2 Simplify. = a ² -a-2	438. (b + 4)(b + 5) =	439. (c - 11)(c -	3) = 440. (d + 10)(d + 5) =
441. (6 + h)(h - 6) =	442. (i + j)(j - 2) =	443. (k - 3m)(m	+ 5) = 444. (3n + 2m)(7n + 4) =

Review Check List

I don't know how to study for math tests

In general, "A" students are not	Studying is about finding out what you	Studying math is not rereading your
smarter than "C" students, they just	don't know and doing something about	notes! It is redoing and mastering each
study smarter!	it.	type of question prior to the test.
 Make sure you know how to do all the questions on the quizzes and practice tests. "A" students ask for more help before tests than "C-" students do! 	 Redo every question that is on your tough questions list. 	 Go through each page of the guidebook and redo one question from each section.

Definitions:		Pg #	Face it
			©⊗*
Go to page 3 and write down any	Define each word and be able to show your	3	i 1 1
definitions that you are unsure of.	understanding with examples.		


Learning Target	Example	Pg #	Face it ©⊗
Create a concrete model or a pictorial representation for a given polynomial expression.	Model $-2x^2 + x - 5$ using algebra tiles.	12	
Write the expression for a given model of a polynomial.	Given algebra tiles, write a polynomial expression.	11,21,22	
Describe a situation for a given first degree polynomial expression.	Think of a real life situation that can be explained by \$4x	9,30	
Identify the variables, degree, number of terms, and coefficients, including the constant term, of a given simplified polynomial expression.	Given $5x^2+3x-4$, name the variable(s), constant(s), coefficient(s), terms, type of polynomial and degree of the polynomial.	13-15	
Match equivalent polynomial expressions given in simplified form (e.g., $4x - 3x2 + 2$ is equivalent to - $3x2 + 4x + 2$).	Which of the following is equivalent to $4x - 5x^2 + 3$: $5x^2 - 4x + 3$, $-5x^2 + 4x + 3$, $-5x^2 + 4x - 3$	14-16	
Model addition of two given polynomial expressions concretely or pictorially and record the process symbolically.	Simplify $(3x^2+5x+6)+(2x^2+x+3)$ using algebra tiles	25-28	
Model subtraction of two given polynomial expressions concretely or pictorially and record the process symbolically.	Simplify $(3x^2-2x+1)-(x^2-x+3)$ using algebra tiles.	25-28	
Apply a personal strategy for addition, subtraction, multiplication and division of given polynomial expressions, and record the process symbolically.	Perform the indicated operation. $(-x^2+7x+9)-(6x^2-5)$	27	
Identify the error(s) in a given simplification of a given polynomial expression.	Correct any errors if applicable. -5xy(-3xy) =15x ² +15y ²	9,22,27, 33,37,39	
Model multiplication of a given polynomial expression by a given monomial concretely or pictorially and	Model $_{-2(-3x+1)}$ and complete the multiplication. Use the	31-33,	
record the process symbolically	tiles to show $\frac{2x^2-20x}{2x} =$	35-36	
Provide examples of equivalent polynomial expressions	Write two different polynomial expressions that have the same degree as $-5x^2 + x$ that has coefficients 7 and -2 and constant 5.	14-15	

*Face it. When you have mastered the content draw a $^{\odot}$ OR if you are unsure, draw a $^{\odot}$ and ask for help.

Practice Test

```
Score:_____ 27
```

- Write this test and do not look at the answers until you have completed the entire test. ٠
- Mark the test and decide whether or not you are happy with the result. FACE IT!
- Successful students will go back in the guidebook and review any questions they got wrong on this test.

7. Perform the indicated operation and leave the answer as polynomial.

	+	

Perform the indicated operation and leave the answer as polynomial. 8.

				_

10. If the tiles below are divided by 2x, what is 9. Write a multiplication statement to the quotient? represent the algebra tiles.

Daufaum	- 1	;,,,,,;,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Perform	тпе	inaicatea	operation.

11. $2m^2 - 9m^2 + 7nm - 5m^2 - 4mn$	12. $(-7x^2+7x+1)+(2x^2-7x)$	13. $(x^2 + 3x + 1) - (-2x^2 - 3x)$
14. $(-35y^2 - 21y + 14y) \div (-7y)$	$15. 7x\left(5x+\frac{4y}{7}-3\right)$	16. $(-2x^2+7)+[-9x-(5x^2-1)]$

17. Write a polynomial expression that has the same degree as $-5x^2 + x$ with coefficients 7 and -2 and constant 5.	 18. Which of the following is equivalent to 4x - 5x² + 3: A. 5x² - 4x + 3 B5x² + 4x + 3 C5x² + 4x - 3 	19. What would have to be true if $15x + 30y + 12z$ is equivalent to 15x + 30y + 4n?
20. What is the opposite of $-x + 3$	 21. Write a polynomial that has the coefficients 6, -5, -4, 3 & 2 that simplifies to 2n. 	22. Which of the following are equivalent to $-5(x-2)$? A. $-5x + 10$ B. $-5x - 2$ C. $-5x - 10$ D. $-3(x-2) - 2(x-2)$ E. $3(-x+2) + 2(-x+2)$

23. Write an expression to	24. Peeyurp wor		25. The area of a rectangle is
represent the perimeter if	excavation company. She		$24w^2$ and has a width of
the perimeter of a	-) for each visit	8w. Write an expression to
complete circle is $2\pi r$.	plus \$65/h		represent the length.
	Write an expres		
	represent the p	ossible cost of	
	hiring Peeyurp.		
• • • •			
Perimeter=			
			1 1 1
26. A rectangular prism has the f	following	27. A rectangle	has an area of 9x+27 and a
dimensions; $w = x + 1$, $I = 3$,			f 2x+24. Determine the
Determine an expression for		dimensions.	
surface area of the rectangu	lar prism.		
			• •
		 	• • •
		1 	
		1 	
		1 1 1	

Polynomials Answer Key *AOP=Answered On Page*****AMV=Answers May Vary*

1. 2. 3.	8,100, Apples=box # 99, apples=box #-1 9,101, box #+1
3. 4.	16,200, 2(box #)
4. 5.	24,300, 3(box #)
5. 6.	17,201, 2(box #)+1
0. 7.	18,202, 2(box #)+2
7. 8.	28, 304, 3(box #)+4
0. 9.	$64, 10000, (box \#)^2$
). 10.	65, 10 001, (box #) ² +1
10.	72,10100, $(box #)^{2}$ +box #
12.	
	63, 9999, (box #) ² -1
	n+5
	<i>n</i> +10
16.	<i>n</i> – 6
17.	2 <i>n</i>
	n
18.	<u>n</u> 3
	3
19.	6 <i>n</i>
20.	4n - 2
	2 <i>n</i> +3
	3n-5
	+
23. 24.	+ X
24. 25.	~ +
26.	
27.	
28.	-
29.	+
30.	-
	÷
32.	×
	\$88,\$160,\$240, 8h
34.	\$210,\$300, 30 <i>f</i>
35.	\$8.50, \$25, 0.50 <i>x</i>
36.	20f + 30b, \$310
37.	Final Mark=0.8c + 0.2e, 72%
38.	20f + 30b, \$310, \$200
39.	50b + 4s,\$198, \$282
40.	5c + 2s, \$172, \$56
41.	0.80c + 0.20e, 72%, 50%
42.	0.70c + 0.30e, 54%, 55%
43.	0.60c + 0.40e, 82%, 60%
44.	Answers will vary (ie, a
	business might multiply
	expenses by 4 to determine
	pricing)

ed	On	Page******AMV=Answers	Ma	iy Vary*
		Answers will vary (i.e. A	81.	
		forest fighter's total weight		dark little squares
		including a 42 lb pack)	82.	4 different bars
	46.	Answers will vary (i.e. The		2 different squares.
		area of a patio that must	84.	
		include a 2m² fire pit)	85.	
			86.	E
	Do n	ot read the answers until	87.	В
	you l	have given Randilyn a mark	88.	D
		<i>n</i> – 10	89.	С
		n	90.	F
	48.	<u></u>	91.	G
			92.	See Page 3.
		Correct		See Page 3.
		2n + 3 = 15		See Page 3.
		2 <i>n</i> + 9		See Page 3.
		Correct		See Page 3.
	53.	3 <i>n</i> – 4		See Page 3.
		Correct		See Page 3.
	55.	n(3n)		See Page 3.
		Correct	100.	See Page 3.
		1		See Page 3.
	57.	Correct or $\frac{1}{5}x$	102.	m, n
		5	103.	·
	58	$\frac{1}{2}$ n or $\frac{n}{2}$	104.	
	50.	2 2		
	59.	Correct		m, a, b
	60.	Correct	106.	2, -1
		2	107.	m,b
	61.	Correct or $\frac{2}{5}n$	108.	-4
		8/15	109.	
		3 squares, 2 bars and 4 little	110.	
	05.	squares	111.	
	64	2 big squares, 3 bars and 8	112.	3
		little squares.	113.	2
		x ² +2x+1	114.	2
		2n ² +4	115.	2
		y ² +4y+2	116.	2
		$3x^{2}+2x+4$, $2x^{2}+3x+8$	117.	1
		Draw 4 squares and 1 bar	118.	binomial
		Draw 2 squares and 3 little	119.	trinomial
	, 0.	squares	120.	binomial
	71.	•	121.	trinomial
		squares	122.	monomial
	72	AOP	123.	trinomial
		AOP	124.	trinomial
		AOP	125.	trinomial
		Cuts down confusion.	126.	7x ² -2x+5, -2x ² +7x+5 (AMV*)
		$-4x^{2}+x+5$ (AMV*)	127.	В
		2x ² -x+y ² -3y+3 (AMV*)	128.	A.O.P.
		$x^{2}-2x+z, y^{2}-2y+m (AMV^{*})$		-5x-4, -99x-100 (AMV*)
		$-x^{2}+2y^{2}-x, -z^{2}+2n^{2}-2$ (AMV*)		$xy+mn+5x^2$, $x^2+mn+3y^2$
		3x ² -3x+1, 3y ² -3y+1		(AMV*)
	•		131.	2x ² +100, 3x+2000 (AMV*)

Copyright Mathbeacon2008-2015. License Agreement Per student/Per Year: This content may be used before but not after June 2016. 47

1325x ² -100x	183. ×+4
133. x+y+z+n	184. x ² +x-1
134. B	185. x ²
135. A	186. Yes
136. B	187. Yes
137. bcd	188. Yes
138. BCD	189. yes
139. ABC	190. no
140. 2,-1, binomial	191. no
141. 1,-8,2	192. yes
142. 2,0, monomial	193. yes
143. 2x+2y, 14cm	194. no
1448	195. no
145. 2x+2y, 14cm, 36cm	196. no
146. x+y+y², 3.64cm, 100cm	197. yes
147. πx+2x, 25.7cm	198. yes
148. 20n+1.5, 12	199. no
149. 9m+13.5n, \$99, \$132.75	200. no
1508	201. yes
151. 0	202. yes
152, 299	203. no
153. 2	204.yes
2	205. yes
154. $\frac{3}{2}$	206.yes
	207. no
1556	208.yes
156. $-\frac{9}{2}$	209. AOP
156. $-\frac{5}{2}$	210. 9x ² +10x+7
2	211. 5x ² +5x
157. $-\frac{37}{8}$	212. $-x^2+4x$
157. —	213. x ² +3x-5
	21415x-11
158. AOP	215. $x^{2}+1$
159. AOP	216. $-x^2+1$
160. 6	217. x-1
161. $3x^2+3x+4$	
162. trinomial	218. Incorrect 15m² — 9m
163. 6	219. Incorrect -2m ² + 4m
164y+3	
165. binomial	220. – n ³
166. $2x^2$ (AMV*)	221. x = z
167. x^2+y^2 (AMV*)	222. a=11
168. x ² +x (AMV*)	223. 3y=6m or y=2m
169. x+2 (AMV*)	224. a=12
170. 3xy	225. a=-4
171. xy+y²	226. 12z=4n or n=3z
172. x+1	2273m ² +6mn
173. 2x ²	228. n-1
174. Must have the same variable	2293m ² +4n
and the same exponents.	2309mn+6n
175. 2x ² +1	231m-3n-2
176. B&F, D&E	232. 4m²n-n²m
177. $2x^2+3x-1$	233. 10m²-8m²-8n+7n+4m
178. same, same	234. 5n²+7n-5n-5n²
179. ху, ху	235.6n+3n-5n-4n+2n
180. x+y+z, x+y+z	236. 12×+18
181. x ² +x+5, x ² +x+5	237. 14x+2
182. AOP	238.32×+1

239. 78cm 240.156cm 241. 97cm 242. 9m – 2n 243. -8*n*+19 244. –*m* – 2*n* 245. 5m + 2n 246. 5*m* + 19*n* 247. 2n 248. $8m^2 - m$ $249. -n^3 + 4m^2n$ 250. $2m^2 + 4m - n$ 251. Incorrect 9mn + 2m - 4n 252. correct $-mn^2 + 12n$ 253. Incorrect $3m^3 - 5n$ ^{254.} $\frac{3}{2}$ 255.-6 256. $-\frac{9}{2}$ $257. -\frac{37}{8}$ 258.5x²+6x+9 259. -x²+2x-1 260. $-5x^2-4x+9$ 261. $-x^2+8x+1$ 262. $-3x^2$, 3 dark squares 263. -3x-3, 3 dark bars and 3 dark units 264. -x²+2x-3, 1 dark square, 2 bars and 3 dark units 265. AOP 266. AOP 267. AOP 268. AOP 269.-7x²+7x+14 270. -x²+6x-4 $271, -10x^2+3x+9$ 272. -5x²+6 273. 3x²+6x+1 274.-x²-9x+6 275. x²-4x+3 276. 5x²-8x+13 277. 15x²-14x+9 278. 12x²-9x+10 279. -19x²+5x+57 280.8x²-8x+16 281. $5x^2+4x+15$ $282.5x^{2}+4x+3$ 283.9c+16 284.10q-10

Copyright Mathbeacon2008-2015. License Agreement Per student/Per Year: This content may be used before but not after June 2016. 48

389. 5y+1

285.0 286. 7v²-5v 287. -15j²-13j 288. $2x^2-3x$ 289. x²-3x+1 290. 2x²-3x 291. $-2x^2+4$, 2 white squares, 4 dark units $2x^{2}-4$ 292. -3x-3 3 white bars and 3 white units. 3x+3 293. 2x²-2y², 2 dark squares & 2 white smaller squares, $-2x^{2}+2y^{2}$ 294.-3x+2 295. 2x²-x-2, 2 squares, 1 dark bar and 2 dark units 296. -2x, 2 dark bars 297. -3x+2 298. 8xy-2 299. x²+5x 300.-7x²-9x+8 301. -7x²-9x+9 302. -15x+9y 303. 4x+2 304. -6x-13 305. 306.\$/min on Thursday, 307. \$/min on Friday 308.\$287 309.1.25x-75-125 310. \$297.50 311 312. 80h+65s 313. 70h+65s 314. 80h+65s+70m+65n (AMV*) 315. \$1435 316. YES, 6X+9 317. Multiply 318. 6x+9 319. 9x 320. 2x² 321. 2x(2x+1)322.5(x+2) 323.2x(x+4) 324. $4x^2+2x$ 325. 5x+10 326. $2x^2+8x$ 327. 2x(-2x+1), -4x²+2x 328.-6(x+2), -6x-12 $329. -2x(-x-4), 2x^2+8x$ 330.2x(3x+2)331. 2x(4x+3) 332. 2x(2x-5) 333. -2x(3x+6) or 2x(-3x-6) 334. 6x-2

335. 6x-2 336.-12x+6 337.10x 338. -6x 339. 16xy 340. 18xy 341. 3.8x² $342.-6x^2v$ 343. $5x^2z$ 344.0 345.15x²y² 346.6x-2 347.-10x+20 348. 14xy-12y 349. 36x-12 $350. -8x^2 + 24x$ 351. $21x^2-6xy$ 352.35x²+4xy-21x 353.8x²-2xy-0.5xz 354. $8x^2-4x+22xz$ 355. ACD 356. BDE 357. AD 358.14x+4, 12x²+8x 359. 132 360.16x+3,14x²-8x 361.40 362.16πx² $363.6x^2+16x$ 364. 4x²+22x+6 365. $2x^2+6x$ 366. 2x-8 $367. 2x^2 + 6x$ 368.2x-8 369. x-10 370. 2x 371. -7x² 372. 14x 373. Already reduced 374.-5x 375. 4x 376.-6 $377. \frac{2}{3}x$ 378.-1.2x 379. $\frac{16}{7}x$ 380. ABCD 381. x-3y-4 382. AOP 383. 2x²-3x-1 $384.3x^2+2x-7$ 385. x+5y-z 386. y-1+z

390.4y-6 391. -3x+2 392.4y-2x+10 393.-y+5x+2 394. x+2y-5 395. Already reduced 396. 2y+7x-4z 397. correct 398. Already reduced 399. correct 400. x+x does not equal xx as 5+5 does not equal 5 times 5. 401. 4w 402.8 by x+2 403. 4 by $x^{2}+3$, 2 by $2x^{2}+6$ 404. 4x, 40x by 40x 405. x+5 by 2 406. AOP 407.5x+2 408. 30x+2 409. AOP 410, 60x 411. 10 by 3x+1 412. $12x^2 + 9y$ 413. 6x²-y 414. $-14x^2+3xy$ 415. 2x 416. 12x 417. y 418. $x^2 - 2x$ 419. $\frac{2x^2+4}{3x}$ 420. Already reduced 421. $x^2 - 2x$ $422.w^3 + 6w$ 423. $b^2 + 4b^6$ 424.2x³ - 1 425. -11y - 6y⁴ 426. Cannot be reduced. 427. $\frac{2x^2 + 4}{3x}$ 428. $\frac{5x + x^2}{6}$ 429. $\frac{-3x + x^2}{4}$ 430. Cannot be reduced. 431. $\frac{2xm^3 + x^2}{m}$ 432. $\frac{-3xm^3 + 6x^2m}{2}$ 433. x²+4x

Copyright Mathbeacon2008-2015. License Agreement Per student/Per Year: This content may be used before but not after June 2016. 49

387. -4y-4

388. $3x^2+5x-2$

434.2×+8	2.
435. x ² +6x+8 436. a ² -a-2	3.
	4.
437. a²-a-2	5.
438. b ² +9b+20	6.
439. c ² -14c+33	7.
440. d ² +15d+50	8.
441. h ² -36	9.
442. ij-2i+j ² -2j	10.
442.1J-21+J -2J	11.
443. km+5k-3m²-15m	12.
444. 21n²+12n+14mn+8m	13.
Practice Test Answers	14.
Fructice test Answers	15

1. $3x^2 - x + 5$

3,-1 -x+2 Binomial 2

2

- 7. -5x²-4x+9
- 8. $-x^2+8x+1$
- 9. 2x(2x-5)
- 10. **-3x-6**
- 11. **-12m²+3mn**
- 12. -5x²+1
- 13. 3x²+6x+1
- 14. 5y+1
- 15. $35x^2+4xy-21x$
- 16. -7x²-9x+8

- 17. $7x^2-2x+5$ or $-2x^2+7x+5$
- 18. B
- 19. 12z=4n or n=3z
- 20. **x-3**
- 21. (AWV*) 6n+3n-5n-
 - 4n+2n
- 22. ADE
- 23. π**r+2r**
- 24. 65h+70
- 25. **3w**
- 26. 4x²+22x+6
- 27. 9 by x+3

Copyright Mathbeacon2008-2015. License Agreement Per student/Per Year: This content may be used before but not after June 2016. 50