Exponents and Powers

This belongs to:

$\left.\left.\begin{array}{||c|c|c|c||}\hline \text { LESSON \# } & \text { DATE } & \text { QUESTIONS FROM } \\ \text { NOTES }\end{array}\right) \begin{array}{c}\text { Questions that I } \\ \text { find difficult }\end{array}\right]$
$\odot() \cdot()$ Find detailed homework solutions at www.mathbeacon.ca/guidebooks/\#math9 $\odot \odot) \cdot($

Your teacher has important instructions for you to write down below.

Exponents and Powers

Exponent Laws and Key Terms

	Definition	Example
Base	The number that is multiplied by itself in a power.	$5^{7} \rightarrow$ the 5 is the base.
Coefficient	A number in front of a variable.	$2 b^{3}+5 \rightarrow$ The 2 is the coefficient.
Cube number	A number that is a product of three identical	$1,8,27,64, \ldots$
Evaluate	numbers.	Determine the answer.
Exponent	multised number that tells you how many times to	$2 b^{3}+5 \rightarrow$ The 3 is the exponent.
Exponential form	A faster way of writing a repeated multiplication.	$5 \times 5 \times 5 \times 5 \times 5 \times 5 \rightarrow 5^{6}$
Power	An expression made up of a base and an exponent.	5^{7}
Power of a product	A product raised to an exponent.	$(2 \times 3)^{7}$
Power of a quotient	A quotient raised to an exponent.	$\left(\frac{5}{7}\right)^{4}$
Power of power	A power raised to an exponent.	$\left(2^{3}\right)^{5}$
Repeated multiplication	Writing in exponential form to show its meaning.	$5^{6} \rightarrow 5 \times 5 \times 5 \times 5 \times 5 \times 5$
Solve	A direction to determine the value of a variable.	The solution to $x+8=18$ is $x=10$.
Square number	A number that is a product of two identical	$1,4,9,16,25 \ldots$
numbers.	A letter that is used to represent a number.	$2 b^{3}+5 \rightarrow$ The b is the variable.

Exponent Laws

Exponent Law	$m^{x} \times m^{y}=m^{x+y}$	$m^{x} \div m^{y}=m^{x-y}, x>y$	$\left(m^{x}\right)^{y}=m^{x y}$
Example	$5^{2} \times 5^{3}=5^{2+3}=5^{5}$	$5^{4} \div 5^{3}=\frac{5^{4}}{5^{3}}=5^{4-3}=5^{1}$	$\left(5^{2}\right)^{3}=5^{2 \times 3}=5^{6}$
Explanation	$\begin{aligned} & 5^{2} \times 5^{3}= \\ & =(5 \times 5) \times(5 \times 5 \times 5) \\ & =5 \times 5 \times 5 \times 5 \times 5 \\ & =5^{5} \end{aligned}$	$\begin{aligned} & \frac{5^{4}}{5^{3}}= \\ & =\frac{5 \times 5 \times 5 \times 5}{5 \times 5 \times 5} \\ & =\frac{5 \times 5 \times 5 \times 5}{5 \times 5 \times 5}=5^{1} \end{aligned}$	$\begin{aligned} & \left(5^{2}\right)^{3}= \\ & =\left(5^{2}\right)\left(5^{2}\right)\left(5^{2}\right) \\ & =(5 \times 5)(5 \times 5)(5 \times 5) \\ & =5 \times 5 \times 5 \times 5 \times 5 \times 5 \\ & =5^{6} \end{aligned}$
Exponent Law	$(m n)^{x}=m^{x} n^{x}$	$\left(\frac{m}{n}\right)^{x}=\frac{m^{x}}{n^{x}}, n \neq 0$	$m^{0}=1 \& m \neq 0$
Example	$(2 \times 5)^{3}=2^{3} \times 5^{3}$	$\left(\frac{5}{2}\right)^{3}={\frac{5}{}{ }^{3}, 2 \ldots 0}^{2}$	$2^{0}=1$
Explanation	$\begin{aligned} & (2 \times 5)^{3}= \\ & =(2 \times 5)(2 \times 5)(2 \times 5) \\ & =2 \times 5 \times 2 \times 5 \times 2 \times 5 \\ & =2 \times 2 \times 2 \times 5 \times 5 \times 5 \\ & =2^{3} \times 5^{3} \end{aligned}$	$\begin{aligned} & =\left(\frac{5}{2}\right)^{3}= \\ & =\left(\frac{5}{2}\right)\left(\frac{5}{2}\right)\left(\frac{5}{2}\right) \\ & =\frac{5^{3}}{2^{3}} \end{aligned}$	$2^{0}=$ $2^{0}=2^{3-3}=\frac{2^{3}}{2^{3}}=\frac{2 \times 2 \times 2}{2 \times 2 \times 2}=1$

The Power of Exponents

Challenge \#1:

1. Your eccentric Aunt Weltheezan is extremely rich and quirky. She is modifying her will and gives you two options:

- Option \#1: $\$ 100000$ cash on your $16^{\text {th }}$ birthday
- Option \#2: 1 cent on your $16^{\text {th }}$ birthday, 2 cents on your $17^{\text {th }}$ birthday, 4 cents on your $18^{\text {th }}$ birthday ... continuing this pattern for a total of 30 birthdays.
In true quirky fashion, she insists that you make your decision immediately and without a calculator.

Please fill out the agreement.

As soon as you signed the papers, she hands you a calculator and says you will only receive the money if you can explain why you made a wise decision. Defend your decision.

Challenge \#2:

2. A credit card company charges its clients 18% interest on all unpaid debts. At this rate, an un paid bill will double every 4 years. Hiden has a small outstanding balance of $\$ 100$. He thought the credit card company might forget his bill if he never pays it. After 40 years of ignoring his bill, the credit card company shoed up at his home and asked him to pay his bill. How much do you think his bill will be?

A. How many doublings have occurred in 40 years?	B. How large is his bill?	C. Determine a value for n in $b=\$ 100 \times 2^{n}$.

D. In an effort to be able to communicate with people all over the world about money, mathematicians have agreed to use the same names for parts of the equation $b=\$ 100 \times 2^{\text {n. }}$

100 is called the principal, _____ is the power,___ is the base exponent.

Exponents ${ }^{\text {Introduction }}$

a^{x}	a is the base, x is the exponent and a^{x} is the power.
5^{2}	Is read 5 to the exponent 2 and equals 5×5 as a repeated multiplication and evaluates to 25.
2^{5}	Is read 2 to the exponent 5 and equals $2 \times 2 \times 2 \times 2 \times 2$ as a repeated multiplication and evaluates to 32.

Writing numbers in expanded form and exponential form.

3. Express 5^{4} as a repeated multiplication.	4. Express AAA as power.	5. Express 7^{2} as a repeated multiplication.
6. Express $(-3)(-3)(-3)(-3)$ as power.	7. Express 8 as a repeated multiplication.	8. Express nnnnnnn as power.
9. Express $(-2)^{4}$ as a repeated multiplication.	10. Express mmmmm as power.	11. Express $A^{3} B^{2}$ as a repeated multiplication.
12. Express $m G m G m m G$ as power.	13. Express $A^{0} B^{3}$ as a repeated multiplication.	14. Express $A A B B A A B A B$ as power.

15. Which form would you rather use, exponential form or repeated multiplication? Why?

Challenge \#3:

16. Which of the following are equal:
A. -3^{2}
B. $\left(-3^{2}\right)$
C. $-(3)^{2}$
D. $(-3)^{2}$

Explain your reasoning.

Common Errors

Does $-3^{2}=+9 ?$	Does $2^{3}=3^{2} ?$
NO!	No!
- -3^{2} means $-\left(3^{2}\right)$ which means $-(3 \times 3)=-9$	- 2^{3} means $2 \times 2 \times 2=8$
Don't confuse it with:	
- $(-3)^{2}$ means $(-3)(-3)=+9$	3^{2} means $3 \times 3=9$

Which of the following when evaluated will be positive?

18.	A. 2^{1}	B. 2^{2}	C. 2^{3}	D. 2^{4}	E. 2^{5}	F. 2^{6}
19.	A. -2^{1}	B. -2^{2}	C. -2^{3}	D. -2^{4}	E. -2^{5}	F. -2^{6}
20.	A. $(-2)^{1}$	B. $(-2)^{2}$	C. $(-2)^{3}$	D. $(-2)^{4}$	E. $(-2)^{5}$	F. $(-2)^{6}$

Evaluate the following in your head without using a calculator.

21. $(-1)^{2}=$	22. $(-1)^{3}=$	23. $(-1)^{4}=$	24. $(-1)^{5}=$	25. $(-1)^{30}=$
26. $(-1)^{72}=$	27. $-1^{33}=$	28. $-1^{30}=$	29. $-1^{35}=$	30. $(-1)^{301}=$
31. $(-1)^{72}(-1)^{3}=$	32. $(-1)^{33}(-1)^{3}=$	33. $-1^{30}(-1)^{3}=$	34. $-1^{35}(-1)^{3}=$	35. $(-1)^{301}(-1)^{4}=$

Evaluate the following powers.

36. Spot the error. $\begin{aligned} & 2^{3}= \\ & 2 \times 3=6 \end{aligned}$	37. Evaluate. $5^{4}=$	38. Evaluate. $3^{3}=$	39. Evaluate. $-3^{2}=$
40. Evaluate. $(-3)^{2}=$	41. Evaluate. $(-2)^{3}=$	42. Evaluate. $-2^{2}=$	43. Evaluate. $(-2)^{4}=$
44. Evaluate. $-1{ }^{21}=$	45. Spot the error. $\begin{aligned} & -(3)^{2}= \\ & =6 \end{aligned}$	46. Evaluate. $-(-2)^{3}=$	47. Evaluate. $(-1)^{30}=$

48. Use repeated multiplication to explain the difference between 2^{5} and 5^{2} ?

Order the numbers from smallest to biggest.

49.	50.	51.
A. 5^{2}	A. -10^{2}	A. $(-10)^{2}$
B. 2^{5}	B. $(-10)^{3}$	B. $(-1)^{4}$
C. -2^{3}	c. $(-10)^{1}$	C. $-(-10)^{2}$
D. -3^{2}	D. $(-10)^{2}$	D. $-(-10)^{3}$

Is each statement true? Explain your reasoning.
52. Is $-2^{4}=(-2)^{4}$?
53. Is $-2^{4}=-(4)^{2}$
54. Is $-3^{3}=(-3)^{3}$

Area and surface area
55. Does $2^{3}=3^{2}$? Use the drawings below to support your explanation.

56. A square has a side length of $y \mathrm{~cm}$, write the area as a power.

57. If $y=5 \mathrm{~cm}$, determine the area of the square.
58. If a cube has an edge length of $x \mathrm{~cm}$, write the surface area as a produc \dagger and a power.

59. If $x=10 \mathrm{~cm}$ determine the surface area of the cube.

Predict whether each power will be positive or negative.

| $60 .-41^{6}$ | $61 .-(-93)^{8}$ | $63 .-(25.2)^{6}$ | |
| :--- | :--- | :--- | :--- | :--- |
| | | $62 .\left(-2^{4}\right)^{3}$ | |

Determine the solution.

64. The population of certain forms of bacteria double every day. If the population began with 1 million, how large would the population be after 7 days? Write your answer first as a power and then evaluate $i+$.
65. Rory is 16 and just invested $\$ 1000$ in a mutual fund that should grow in value by 8% per year. At this rate his money will double every 9 years. How much will his initial investment be worth when he retires at age 61? Write your answer first as a power and then evaluate it.
66. The Richter scale represents a 10-fold increase in intensity for every 1 unit of magnitude on the Richter scale. That means that a Richter scale rating of 2 is ten times more intense than a Richter scale rating of 1 . How much greater is a Richter scale rating of 8 compared to a Richter scale rating of 4? Write your answer first as a power and then evaluate it.

Evaluate: These are higher thinking questions.

67. $(-1)^{\text {An even \# }}=$	68. $(-1)^{\text {An odd \# }}=$	69. $-1^{\text {An even \# }}=$	70. $-1^{\text {An odd } \#}=$
71. If n is an integer evaluate: $(-1)^{2 n+2}=$	72. If n is an integer evaluate: $(-1)^{2 n-5}=$	73. If n is an integer evaluate: $(-1)^{2 n+4}=$	74. If n is an integer evaluate: $(-1)^{2 n+1}=$

Challenge \#4:
75. Evaluate

Explain the process.
76. Evaluate.
$(-3)^{2}-2^{3}=$

	$2\left(3-2^{3}\right)^{3} \div 5^{2}$

\qquad

©Order of Operations and Exponents

What does BEDMAS stand for?

77. B	78. E	79. D^{*}	80. M^{*}	81. $A^{\star *}$	82. $S^{* *}$
83. *What order do you do $D \& M ?$	84. **What order do you do $A \& S ?$				

Evaluate each of the following and record the process.(Show your work)

85. $(-3)^{2}-2^{3}=$ Possible solution strategy $=(-3)^{2}-2^{3} \rightarrow(-3)(-3)-2 \times 2 \times 2$ $=9-8$ =I	86. $5^{2}+3^{3}=$	87. $(-3)^{2}+(-2)^{3}=$	88. $(-3)^{2}-(-2)^{3}=$
89. $-(-3)^{2}-2^{3}=$	90. $-3^{2}-2^{3}=$	91. $-3^{2}-(2)^{3}=$	92. $3^{2}-2^{3}=$
93. $(5-3 \times 2)^{3}=$	94. $(5+1 \times 2)^{2}=$	95. $(3-2 \times 2)^{2}=$	Spot the error. $\text { 96. } \begin{aligned} & (5-3 \times 2)^{2}= \\ = & (2 \times 2)^{2} \\ = & (4)^{2} \\ = & = \end{aligned}$
97. $2\left(3-2^{3}\right)^{3} \div 5^{2}$	98. $\left(5^{2}-7 \times 3\right)^{2}=$	99. $\left(18-5 \times 2^{2}\right)^{2}=$	100. $\left(40-2^{3} \times 5\right)^{2}=$
$\begin{aligned} & \text { Possible solution strategy: } \\ & =2\left(3-2^{3}\right)^{3}+5^{2} \\ & =2(3-8)^{2}+25 \\ & =2(-5)^{3}+25 \\ & =2(-155)+25 \\ & =-25 \div+25 \\ & =- \text { - } \end{aligned}$			

Insert brackets to make each statement true.
101. $6+3^{2} \div 3=27$

$102.9-5-2^{3} \times 3+2^{2}=200$	$103.30-3+2^{2} \times 10^{2}=500$

Which of the following are true. Explain how you know.

104. True or False? $2^{3}+2^{2}=2^{3} \times 2^{2}$	105. True or False? $10 \times(2 \times 2 \times 2) \times(2 \times 2)=2^{2} \times 5 \times 2^{4}$	106. Which of the following do the brackets not make a difference to: A. $\left(-3^{2} \times 2\right)+4$ B. $-3^{2} \times(2+4)$ C. $\left(-3^{2}\right) \times 2+4$ D. $-\left(3^{2} \times 2\right)+4$
107. Which operation must be completed first? $3-5(4)^{3}+7$	108. Which operation must be completed first? $3+5[10 \times(4-7)]^{3} \div 2$	109. Which of the following do the brackets make no difference: A. $10(-5)^{2} \times 10$ B. $10-\left(5^{2} \times 10\right)$ C. $\left(10-5^{2}\right) \times 10$ D. $(10-5)^{2} \times 10$

Determine the missing value.

110. Solve for x.	111. Solve for x.	112. Solve for x.	113. Solve for x.
$2^{3}+3^{x}=17$	$\left(5^{2}-7 \times 3\right)^{x}=16$	$3^{2} \times 10^{x}=9000$	$\left[2^{x}-(33)\right]^{x}=-1$

Challenge \#5: Use your calculator to evaluate each problem.

$114 . \sqrt{1024}$	115.5^{4}	$116 .(-4)^{4} \&-4^{4}$

Calculator Skills

There are many different calculators.
Write down the buttons you need to press on your calculator to get the answer.

	Option \#1	Option \#2	What buttons do you press?
117. $\sqrt{1024}=32$	Press $1024 \rightarrow \sqrt{ } \rightarrow=$	Press $\sqrt{ } \rightarrow 1024 \rightarrow=$	
118. $5^{4}=625$	Press $5 \rightarrow x^{y} \rightarrow 4 \rightarrow=$	Press $5 \rightarrow^{\wedge} \rightarrow 4 \rightarrow=$	
119. $(-4)^{4}=256$	Press $(\rightarrow-4 \rightarrow) \rightarrow x^{y} \rightarrow 4=$		
120. $-4^{4}=-256$	You may need to type it into your calculator as $-\left(4^{4}\right)$. Remember each calculator is different.		

*Sometimes you need to press $2^{\text {nd }}$ or INV or Shift

Evaluate the following using your calculator:

121. $\sqrt{4096}=$	122. $-4^{2}=$	123. $5^{1}=$	124. $(-1)^{50}=$
125. $\sqrt{256}=$	126. $3^{5}=$	127. $\sqrt[3]{64}=$	128. $-2^{5}=$
129. $-4^{3}=$	130. $-2^{2}+2=$	131. $(-7)^{3}=$	132. $\sqrt{900}=$

Evaluate the following using your calculator:

$133 .-5^{2}$	$134 .(-5)^{2}$	$135 .-1^{200}-3^{2}$	$136 .-(-3)^{2} \div 3 \times 2^{3}$
$137.2-(3-2 \times 5)^{2}$	$138.5(2-7)-(10-2 \times 3)^{3}$	$139.2-(3-2 \times 5)^{5} \div(5+2)^{3}$	$140 . \frac{10-3^{2} \times 4}{-2^{4}-10}$

Challenge \#6:

141. How would you write 4096 as a power of 2? Another way of saying this is, 2 to what exponent equals 4096.

Write down the steps to solve the challenge to the left.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

142. Write 4096 as a power of 2.		
Solution \#1 - Divide by 2 and keep track. - 4096 $\rightarrow 2048 \rightarrow 1024 \rightarrow 512 \rightarrow 256 \rightarrow 128 \rightarrow$ $64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2$ - Count the how many numbers there are - There are $12 \rightarrow 2^{12}=4096$	Solution \#2 - Smart Guessing - Try $2^{10}=1024 \rightarrow$ too small - Try $2^{15}=32768 \rightarrow$ too big - Try $2^{13}=8192 \rightarrow$ closer... - Try $2^{12}=4096 \rightarrow$ Done	Solution \#3 \rightarrow Math 12 - Use LOGS - $2^{N}=4096 \rightarrow \log _{2} 4096=N$ - $\log _{2} 4096=\frac{\log 4096}{\log 2}=12$
Which way works best for you?		

Write the following as a power of 2.

$143.64=$	$144.8=$	$146.32=$	

Solve for x.

$147.81=3^{x}$	$148.27=3^{x}$	$149.9=3^{x}$	$150.19683=3^{x}$
$151.100=10^{x}$	$152.100000=10^{x}$	$153.10=10^{x}$	$154.1=10^{x}$

Using exponents and order of operations to solve problems.
155. Balkee invested $\$ 2000$ in a mutual fund that returned 8% interest each year. The following formula can be used to determine the answer. $A=\$ 2000(1.08)^{23}$. How large will the investment be in 23 years?
156. A colony of bees increases 2 fold every week. How large will the colony grow to after 20 weeks if it began with 2 bees. The following formula can be used to determine the answer. $A=2(2)^{20}$.
157. A very nosey student asked Mr. Spray how much he charges his tenants each month for rent. Mr. Spray gladly answered, "I charge them 0.15×10^{4} dollars each month." How much does he charge his tenants each month and how weird is he?

Write an expression to represent the difference between the areas of the two shapes
158. Express the difference in area between the two squares as a difference of two powers.

159. Calculate the difference in area between the two squares.
160. Create an expression to represent the difference in surface area between the two cubes.

161. Calculate the difference if $x=3 \mathrm{~cm}$ and $y=5 \mathrm{~cm}$.

Insert brackets to make each statement true.

162. $5+2^{2}-40^{2}=81$

$163.5+2^{3} \times 5-30^{2}=105$	$164.405-5-2 \times 10^{2}=0$

Using exponents and order of operations to solve problems.
165. The surface area of a sphere can be found using the formula $A=4 \pi r^{2}$. If the radius of the sphere we live on is 6378 km . Determine the surface area of our planet. (Use $\pi=3.14$)
167. Review Aunt Weltheezan's proposition at the start of this section. Many people will choose the $\$ 100000$ cash now. They say they will invest it now and make more money. Use the following formula to determine the value of the $\$ 100000$ invested for 30 years growing at $8 \% . \quad \$=100000(1.08)^{30}$
166. Let's revisit Aunt Weltheezan's proposition of a gift of 1 cent on your $16^{\text {th }}$ birthday, 2cents on your $17^{\text {th }}$ birthday and so on for a total of 30 birthdays. The formula, sum $=\frac{0.01\left(2^{30}-1\right)}{2-1}$ will calculate the sum of the first 30 gifts. Determine the sum.
168. The population of rabbits living near the university has doubled ever year since the first two rabbits escaped from the biology lab. If the current population of rabbits is 32,768 , how many years ago did the first two rabbits escape?

Exponent Laws: Multiplication and Division

Challenge \#7: Determine the answer by any method and explain your solution.

Challenge \#8: Can you think of another way of explaining each solution.

171. Justin's explanation on how to solve $2^{9} \times 2^{7}=2^{n}$.
$2^{9} \times 2^{7}$
$\left(2^{9}\right) \times\left(2^{7}\right)$
I wrote each power in expanded form. ($2 \times 2 \times 2) \times(2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2)$
I removed the brackets since there is only multiplication.
2x2x2x $2 \times 2 \times 2$
I counted the 16 twos being multiplied together.
Therefore $\mathrm{n}=16$ and $2^{9} \times 2^{7}=2^{16}$.

Is there another way? Explain.
172. Justin's explanation on how to solve $\frac{2^{12}}{2^{4}}=2^{n}$.

I wrote each power in expanded form.
$\frac{2^{12}}{2^{4}}=\frac{2 \times 2 \times 2}{2 \times 2 \times 2 \times 2}$
I reduced the fraction.

$$
=\frac{2 \times 2 \times \lambda \times \lambda \times \lambda \times \lambda}{\lambda \times \lambda \times \lambda \times \lambda}
$$

I counted 8 twos that are still being multiplied together.
Therefore $\mathrm{n}=\mathbf{8}$ and $\frac{2^{12}}{2^{4}}=2^{8}$
Is there another way? Explain.

Write your answer in simplified exponential form.

$173 .(\mathrm{mmm})(\mathrm{mmmm})=$	$174 .(\mathrm{mm})(\mathrm{mmmmmm})=$	$175 .(\mathrm{mm})(\mathrm{mmmm})=$	176. $(\mathrm{mmm})(\mathrm{mmmmmm})=$
$177 .\left(m^{3}\right)\left(m^{4}\right)=$	$178 .\left(m^{2}\right)\left(m^{6}\right)=$	$179 .\left(m^{2}\right)\left(m^{4}\right)=$	$180 .\left(m^{3}\right)\left(m^{6}\right)=$

181. When powers are multiplied together what happens to the exponents?

> Multiplication Rule
> 182. $m^{a} \times m^{b}=m$
183. When powers with the same bases are multiplied together their exponents are
\qquad together

Division Rule
184. $\frac{m^{a}}{m^{b}}=m$
185. When powers with the same base are divided their exponents are \qquad

Simplify:

$\text { 186. } \frac{\mathrm{mmm}}{\mathrm{mmm}}=$	$\text { 187. } \frac{\mathrm{mmmmm}}{\mathrm{mmm}}=$	$\text { 188. } \frac{\mathrm{mmmmm}}{\mathrm{~mm}}=$	$\text { 189. } \frac{\mathrm{mm}}{\mathrm{~mm}}=$
$\text { 190. } \frac{m^{3}}{m^{3}}=$	191. $\frac{m^{5}}{m^{3}}=$	192. $\frac{m^{5}}{m^{2}}=$	193. $\frac{m^{2}}{m^{2}}=$
194. $m^{3} \div m^{3}=$	195. $m^{5} \div m^{3}=$	196. $m^{5} \div m^{2}=$	197. $m^{2} \div m^{2}=$

198. When powers are divided what happens to the exponents?

Write each as a single power.

199. $\frac{m^{30}}{m^{3}}=$	200. $\frac{m^{12}}{m^{5}}=$	201. $\frac{m^{20}}{m^{9}}=$	$\frac{m^{24}}{m^{7}}=\mathrm{m} 2$

Write each as a single power.

215. $\mathrm{m}^{5} \times \mathrm{m}^{6} \times \mathrm{m}^{2} \times \mathrm{m}^{3}=$	216. $10^{5} \times 10^{60} \times 10^{2} \times 10^{3}=$	217. $\mathrm{m}^{0} \times \mathrm{m}^{6} \times \mathrm{m} \times \mathrm{m}^{3}=$	218. Spot the error. $\begin{gathered} m^{5} \times m^{6} \times m \times m^{3}= \\ =m^{5+6+0+3} \\ =m^{14} \end{gathered}$
219. $\mathrm{m}^{12} \div \mathrm{m}=$	$220.5^{12} \div 5^{2}=$	221. Evaluate. $-19^{20} \div(-19)^{18}=$	222. Evaluate. $41^{4} \div 41^{3}=$

Write as a product or a quotient.

223. Write 7^{10+6} as a product of two powers.	224. Write $(-6)^{17-15}$ as a	225. Write $-m^{7+5}$ as a product of two powers.	226. Write -11^{70-50} as a division of two
	division of two powers.		

Explain.

2 227. Does $(-2)^{2}(-2)^{3}=-2^{5} ?$	228. Does $(-1)^{5}(-1)^{3}=-1^{8} ?$	229. Does $2^{3}+2^{2}=2^{5} ?$
Explain.	Explain.	Explain.

True or false
230. True or
A. $2 \times 5^{3} \times 5^{2}=10^{5}$
B. $2^{2} \times 5^{2}=10^{2}$
C. $m^{200}+m^{400}=m^{600}$
D. $5^{2} \times 5^{5}=5^{7}$ False?
231. True or
A. $5^{3}+5^{4}=5^{7}$
B. $2^{2}+5^{2}=7^{2}$
c. $m^{5} \times m^{4}=2 m^{9}$
D. $2^{3} \times 5^{2}=10^{5}$

False?

Simplify and write your answer as a single power.

$\text { 232. } \frac{8^{5} \times 8^{3}}{8^{4}}=$	$\text { 233. } \frac{9^{50} \times 9^{3}}{9^{40}}=$	$\text { 234. } \frac{(-7)^{2}(-7)^{7}}{(-7)^{5}}=$	$\text { 235. } \frac{(-5)^{4}(-5)^{6}}{(-5)^{8}}=$
236. Evaluate. $\frac{2^{5} \times 2}{2^{2}} \times \frac{2^{2} \times 2^{4}}{2^{5}}=$	237.Evaluate. $\frac{9^{7} \times 9^{2}}{9^{4} \times 9^{3}} \times \frac{9 \times 9^{2}}{9^{3}}=$	$\text { 238. } \frac{M^{5} M^{4}}{M^{6}} \times \frac{M^{2} M^{7}}{1}=$	Spot the error. $\begin{aligned} & \text { 239. } m^{5} m^{6} \times \frac{m^{2} m^{3}}{m^{8}}= \\ & m^{11} \times \frac{m^{5}}{m^{8}}=\frac{m^{16}}{m^{8}} \\ & \frac{m^{16}}{m^{8}}=m^{2} \end{aligned}$

Challenge \#9:

Simplify each product or quotient as a single power.

242. $\left(2 m^{5}\right)\left(5 m^{6}\right)=$	243. $\left(3 m^{5}\right)\left(4 m^{6}\right)=$	244. $\left(-3 m^{2}\right)\left(-m^{2}\right)=$	245. $\left(5 m^{5}\right)\left(4 m^{6}\right)=$
$\text { - }=2 \times 5 \mathrm{xm}^{5} \mathrm{~m}^{6}$	$246 .-3 m^{4}\left(5 m^{6}\right)=$	$247 .-3 m^{2}\left(-10 m^{60}\right)=$	$248.2 m^{50}\left(-4 m^{6}\right)=$
$\text { 249. } \frac{6 m^{6}}{2 m^{2}}=$	$\text { 250. } \frac{40 m^{40}}{20 m^{20}}=$	251. $\frac{-10 M^{10}}{-5 M^{5}}=$	$\text { 252. } \frac{20 M^{20}}{5 M^{5}}=$
$m^{6}=\frac{3 m^{6}}{}$			
大 $m^{2} m^{2}$	$\text { 253. } \frac{9 m}{6}=$	$\text { 254. } \frac{16 m^{16}}{2 m^{2}}=$	$\text { 255. } \frac{18 m^{18}}{12 m^{12}}=$

Simplify.

256. $\left(2 m^{2}\right)\left(3 m^{3}\right)\left(-m^{6}\right)(2 m)=$	257. $\left(-2 m^{3}\right)(-3 m)\left(-m^{5}\right)(2 m)=$	258. $\left(-5 m^{20}\right)\left(-2 m^{3}\right)\left(-m^{5}\right)(2 m)=$
$259 . \mathrm{m}^{5} \mathrm{~m}^{3} \div \mathrm{m}^{3}=$ Possible solution strategy: $\mathrm{m}^{5} \mathrm{~m}^{3} \div \mathrm{m}^{3}$ $=\mathrm{m}^{5+3-3}=\mathrm{m}^{5}$	$260 . \mathrm{m}^{5} \div \mathrm{m}^{3} \mathrm{~m}^{2}=$	261. $\mathrm{m}^{5} \div \mathrm{mm}^{4}=$
262. $\mathrm{m}^{7} \mathrm{~m}^{2} \div \mathrm{m}^{4}=$	263. $\mathrm{m}^{3} \div \mathrm{m}^{0} \mathrm{~m}=$	264. Spot the error: $\begin{aligned} & \mathrm{m}^{0} \div \mathrm{mm}^{4}= \\ & =\mathrm{m}^{0} \div \mathrm{m}^{5}= \\ & =\mathrm{m}^{-5} \end{aligned}$

Challenge \#10: Write each product or quotient as a single power.

$\begin{aligned} & \text { 267. } 2^{\times} 2^{2 \times}= \\ & \text { Possible solution strategy: } \\ & \mathbf{2}^{\mathrm{X}} \mathbf{2}^{2 \mathrm{X}}=\mathbf{2}^{\mathrm{X}+2 \mathrm{X}}= \\ & =\mathbf{2}^{\mathrm{X}+2 \mathrm{X}}= \end{aligned}$	$268.2^{4 x} 2^{5 x}=$	269.2× ${ }^{\text {x }}$ =	270. $2^{\times} 2^{y-x}=$
271. $2^{x+1} 2^{2 x}=$	$272.2^{4 x+1} 2^{5 x-1}=$	$273.2{ }^{x+2 y} 2^{y+3 x}=$	274. $2^{3 x+4 y} 2^{5 x+2 y}=$

Simplify where possible.

$275 . \mathrm{m}^{2}+\mathrm{m}^{3} \times \mathrm{m}^{5}$	$276 . \mathrm{m}^{2} \times \mathrm{m}^{3} \times \mathrm{m}^{5}$	$277 . \mathrm{m}^{2}+\mathrm{m}^{2}+\mathrm{m}^{2}$	$278 . \mathrm{m}^{20} \times \mathrm{m}^{10}-\mathrm{m}^{5}$	$279 . \mathrm{m}^{20} \times \mathrm{m}^{10} \div \mathrm{m}^{5}$

Write an equivalent expression without a fraction.

$\text { 280. } \frac{m m m m n n n}{m m m n n}=$	$\text { 281. } \frac{\mathrm{mnnnmm}}{\mathrm{nmmmn}}=$	$\text { 282. } \frac{m m m m n n n}{n m m}=$	$\text { 283. } \frac{m m n}{m}=$
$\text { 284. } \frac{m^{3} n^{3}}{m^{3} n^{2}}=$	$\text { 285. } \frac{m^{4} n^{3}}{m^{2} n}=$	$\text { 286. } \frac{m^{5} n^{30}}{m^{4} n^{8}}=$	287. $\frac{m^{4} n^{3}}{m^{3} n^{2}}=$
$\text { 288. } \frac{20 m^{5} m^{3}}{5 m} \times \frac{2 m^{2}}{4 m^{3}}=$	$\text { 289. } \frac{-4 m^{7} m^{2}}{10 m^{3}} \times \frac{-5 m}{m^{3}}=$	$\text { 290. } \frac{-6 m^{5}}{m} \times \frac{2 m^{2} m^{3}}{-4}=$	$\text { 291. } \frac{m^{5} n^{3}}{m^{4}} \times \frac{m^{2} n^{4}}{n m^{3}}=$

Write as a single power.

	293. $3^{3 x-4} \div 3^{x+1}=$	294.3 $3^{3 x+1} \div 3^{x-4}=$	$295.3^{4 x-1} \div 3^{x-1}=$
	296. $3^{3 x+4} \div 3^{-x+1}=$	297. $3^{2 x+5} \div 3^{2 x-2}=$	$298.3{ }^{0} \div 3^{4 x-2}=$

Challenge \#11:

Challenge \#12:

301. Does $2^{0}=7^{0} ?$	302. Solve for x and evaluate: 303. Determine a pattern to explain the value of 2^{0}. $\frac{2^{3}}{2^{3}}=2^{x}=$ $5^{2} \div 5^{2}=5^{x}=$	$2^{4}=$
		$2^{3}=$
$2^{2}=$		
$2^{1}=$		
$2^{0}=$		

Write your answer in simplified exponential form.
304. $(\mathrm{mmmmm})(\mathrm{mmmmm})=$
307. $\left(m^{5}\right)^{2}=$

$305 .(2 \times 2 \times 2)(2 \times 2 \times 2)(2 \times 2 \times 2)$	$306 .(7 \times 7)(7 \times 7)(7 \times 7)(7 \times 7)$
$308 .\left(2^{3}\right)^{3}=$	$309 .\left(7^{2}\right)^{4}=$

310. When a power is raised to an exponent what happens to the exponents?

Exponent Laws: Power raised to an exponent and the zero exponent.

Power Raised to an Exponent $\text { 311. }\left(m^{a}\right)^{b}=m$ 312. When a power is raised to an exponent, the exponents are \qquad together.	Zero Rule $\text { 313. } m^{0}=$ \qquad 314. Any number raised to the exponent zero is equal to \qquad .

Write as a single power.

$\text { 315. }\left(N^{2}\right)^{3}=$	316. $\left(N^{3}\right)^{2}=$	317. $\left(N^{5}\right)^{3}=$	318. $\left(N^{7}\right)^{2}=$
$\text { 319. }\left(N^{6}\right)^{3}=$	$\text { 320. }\left(N^{2}\right)^{4}=$	321. $\left(N^{8}\right)^{2}=$	322. $\left(N^{7}\right)^{0}=$
$323.9^{5} \times 9^{20}=$	324. $\left(9^{5}\right)^{20}=$	$325.9^{5} \times 9^{4}=$	326. $\left(9^{5}\right)^{4}=$

Challenge \#13: Write as a single power.

Simplify and leave your answer as a single power.

$329.7^{5} \times 7^{20}\left(7^{5}\right)^{4}=$ Possible solution strategy: $\begin{aligned} & =7^{5} 7^{20}\left(7^{5}\right)^{4} \\ & =7^{5} 7^{20} 7^{20} \\ & =7^{45} \end{aligned}$	$330.7{ }^{5} \times 7^{2}\left(7^{50}\right)^{4}=$	331. $7^{7} \times 7^{22}\left(7^{3}\right)^{5}=$	$332.7^{52} \times 7^{2}\left(7^{3}\right)^{2}=$
333. $\left(7^{5}\right)^{4} \times 7^{20}\left(7^{5}\right)^{4}=$	334. Evaluate. $\frac{2^{2} \times 2^{8}\left(2^{5}\right)^{2}}{2^{3}\left(2^{2}\right)^{6}}=$	335. Evaluate. $\frac{3^{2}\left(3^{8}\right)^{2}\left(3^{5}\right)^{2}}{3^{25}}=$	336. Spot the error. $\begin{aligned} & \frac{4 m^{5} m^{3}\left(m^{3}\right)^{2}}{6 m^{3}\left(m^{2}\right)^{2}}= \\ & =\frac{4 m^{5} m^{3} m^{5}}{6 m^{3} m^{4}} \\ & =\frac{4 m^{13}}{6 m^{7}}=\frac{2 m^{6}}{3} \end{aligned}$

Write each as a single power.

337. $\left(11^{5}\right)^{x+1}=$	338. $\left(11^{2}\right)^{x+2}=$	339. $\left(11^{6}\right)^{x+3}=$	340. $\left(11^{2}\right)^{x+4}=$
Possible solution strategy: - $=\left(\mathrm{II}^{5}\right)^{\mathrm{x}+\mathrm{I}}$ - $=\mathrm{II}^{5(\mathrm{x}+\mathrm{I})}$ $=11^{5 \times+5}$			
341. $\left(11^{2}\right)^{3 x+1}=$	342. $\left(11^{2}\right)^{-2 x-4}=$	343. $\left(11^{4}\right)^{x-2}=$	344. Spot the error. $\begin{gathered} \left(11^{2}\right)^{3 x-5}= \\ {1 I^{6 x-5}}^{6 x} \end{gathered}$

Evaluate.

345. $(-15)^{0}=$	346. $-A^{0}=$	$347.5^{0}+8^{0}-135^{0}=$	348. $\left(m^{2} n\right)^{0}=$
$349 .\left(25 m^{2} n-8\right)^{0}=$	350.-(25m $n-8)^{0}=$	351. $2\left(m^{2} n\right)^{0}=$	352.-4($\left.m^{2} n\right)^{0}=$

Challenge \#14:
353. $(2 \times 3)^{2}=2^{x} \times 3^{y}$

Explain your solution:	354. $\left(\frac{2}{3}\right)^{2}=\frac{2^{x}}{3^{y}}$

Explain your solution:
\qquad
\qquad
\qquad
\qquad
\qquad

Exponent Laws: Products and Quotients

Product Rule	Quotient Rule
355. $(m \times n)^{a}=m-n-$ 357. $\left(\frac{m}{n}\right)^{a}=\frac{m}{n-}$ 356. When a product is raised to an exponent each number in the brackets is raised to the same_	358. When a quotient is raised to an exponent each number in the brackets is raised to the
same	

Write each product as product of two powers.		
$359 .(5 \times 2)(5 \times 2)(5 \times 2)$	$360 .(m n)(m n)(m n)(m n)(m n)$	$361 .\left(m^{2} n\right)\left(m^{2} n\right)\left(m^{2} n\right)\left(m^{2} n\right)\left(m^{2} n\right)$
$362 .(5 \times 2)^{3}$		
	$363 .(m n)^{5}$	$364 .\left(m^{2} n\right)^{5}$

365. When a product is raised to an exponent what happens to each number in the brackets?

Write each quotient as a quotient of two powers.

$366 . \frac{2 \times 2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3 \times 3}$	$367 . \frac{m m m}{n n n}$	$368 . \frac{2 m \times 2 m \times 2 m \times 2 m}{5 n \times 5 n \times 5 n \times 5 n}$
369. $\left(\frac{2}{3}\right)^{5}$	$370 .\left(\frac{m}{n}\right)^{3}$	$371 .\left(\frac{2 m}{n}\right)^{4}$

372. When a quotient is raised to an exponent what happens to each number in the brackets?

Explain.

373. When you multiply powers, what do you do with the exponents?	374. When you divide powers, what do you do with the exponents?	375. When you raise a power to a power, what do you do with the exponents?	376. Any term to the power zero is equal to=

377. Explain why $\left(2^{3}\right)^{2} \neq 2^{5}$

Write without brackets.

378. $(\mathrm{mn})^{2}=$	379. $(m n)^{3}=$	380. $(5 n)^{2}=$	381. $(2 n)^{3}=$
382. $(m n)^{5}=$	383. $(\mathrm{mn})^{7}=$	384. $(-2 n)^{2}=$	385. $(-2 n)^{3}=$

Simplify and evaluate where possible.

$386 .\left(\frac{2}{3}\right)^{3}=$	387. $\left(\frac{1}{2}\right)^{5}=$	388. $\left(\frac{7}{2}\right)^{2}=$	389. $\left(\frac{-1}{2}\right)^{4}=$
$390 .\left(\frac{2 m}{n}\right)^{3}=$	391. $\left(\frac{2 m}{5 n}\right)^{2}=$	392. $\left(\frac{m}{5}\right)^{2}=$	393. $\left(\frac{-1}{m}\right)^{5}=$

Write without brackets.

$394 .\left(m^{2} n\right)^{3}=$	$395 .\left(m^{2} n^{3}\right)^{3}=$	$396 .\left(-2 m^{2} n^{3}\right)^{3}=$
		$397 .\left(-m^{5} n^{2}\right)^{4}=$
398.	$\left(\frac{-2 m^{3}}{3 n^{5}}\right)^{3}=$	$\left(\frac{-m^{3}}{n^{3}}\right)^{5}=$
$\left(\frac{2 m^{3}}{5 n^{2}}\right)^{2}=$		
Solution: $\left(\frac{2 m^{3}}{5 n^{2}}\right)\left(\frac{2 m^{3}}{5 n^{2}}\right)=\frac{4 m^{6}}{25 n^{4}}$		

Write without brackets.

410. $\left(\frac{2 n^{3}}{m}\right)^{2} \times\left(\frac{5 m^{4}}{n}\right)^{2}=411 .\left(\frac{-n^{4}}{m}\right)^{3} \times\left(\frac{-2 m^{4}}{-n}\right)^{2}=$

412. Evaluate.

$$
\left(\frac{-2^{2}}{2 \times 5^{2}}\right)^{3} \times\left(\frac{2 \times 5^{4}}{-2}\right)^{2}=
$$

413. Spot the error.

$$
\begin{aligned}
& \left(\frac{-m^{2}}{2 n}\right)^{3} \times\left(\frac{4 n^{4}}{-3 m}\right)^{2}= \\
= & \frac{-m^{6}}{2 n} \cdot \frac{16 n^{8}}{-9 m^{2}} \\
= & \frac{16 n^{8} m^{6}}{18 m^{2} n} \\
= & \frac{8 m^{4} n^{7}}{9}
\end{aligned}
$$

Use an example to clearly explain each exponent law.

Which of the following are possible? Explain or provide an example

420. Could a power with base four be equal to a power with base eight?	421. Could a power with base five be equal to a power with base ten?	422 . Explain why $\left(m^{3}\right)^{2} \neq m^{5}$

Review Check List

Definitions:	$\mathrm{Pg} \#$	Face it 00^{\star}	
Go to page 3 and write down any definitions that you are unsure of.	Define each word and be able to show your understanding with examples.	3	

Learning Target	Example			Pg \#	Face it ©
Demonstrate the differences between the exponent and the base by building models of a given power, such as 2^{3} and 3^{2}	Does $2^{3}=3^{2}$? Use the drawings below to support your explanation.			7,	
Explain, using repeated multiplication, the difference between two given powers in which the exponent and base are interchanged (e.g., 10^{3} and 3^{10})	Use repeated multiplication to explain the difference between 2^{5} and 5^{2} ?			7	
Express a given power as a repeated multiplication	Express 5^{4} as a repeated multiplication.			5	
Express a given repeated multiplication as a power	Express (-3)(-3)(-3)(-3) as power.			5	
Explain the role of parentheses in powers by evaluating a given set of powers (e.g., $(-2)^{4},\left(-2^{4}\right)$ and -2^{4})	Which of the following are equal: $-3^{2},\left(-3^{2}\right),-(3)^{2},(-3)^{2}$ Explain your reasoning.			5,7	
Demonstrate, using patterns, that a^{0} is equal to 1 for a given value of $a(a \neq 0)$	Solve for x and evaluate: $\frac{2^{3}}{2^{3}}=2^{x}=$. \qquad Determine a pattern to explain the value of $2^{0} .2^{4}=$, $2^{3}=, 2^{2}=, 2^{1}=\& 2^{0}=$			20	
Evaluate powers with integral bases (excluding base 0) and whole number exponents	Evaluate. $5^{4}=$, Evaluate. $(-2)^{3}=$, Evaluate. $-2^{2}=$			6	
Explain, using examples, the exponent laws of powers with integral bases (excluding base 0) and whole number exponents:	Use an example to clearly explain each exponent law.$\begin{aligned} & m^{x} \times m^{y}=m^{x+y}, m^{x} \div m^{y}=m^{x-y}, x>y,\left(m^{x}\right)^{y}=m^{x y}, \\ & (m n)^{x}=m^{x} n^{x},\left(\frac{m}{n}\right)^{x}=\frac{m^{x}}{n^{x}}, n \neq 0^{\prime}, m^{0}=1 \end{aligned}$			25	
Evaluate a given expression by applying the exponent laws	Evaluate. $-19^{20} \div(-19)^{18}=$, Evaluate. $\frac{2^{5} \times 2}{2^{2}} \times \frac{2^{2} \times 2^{4}}{2^{5}}=$ Evaluate. $\frac{2^{2} \times 2^{8}\left(2^{5}\right)^{2}}{2^{3}\left(2^{2}\right)^{6}}=$			$\begin{gathered} 16,17 \\ \& 21 \end{gathered}$	
Determine the sum of two given powers (e.g., $5^{2}+$ 5^{3}) and record the process	Evaluate $5^{2}+3^{3}=$ and record the process.			9	
Determine the difference of two given powers (e.g., $4^{3}-4^{2}$) and record the process	Evaluate $-3^{2}-2^{3}=$ and record the process.			9	
Identify the error(s) in a given simplification of an expression involving powers.	Spot the error. $\begin{array}{r} (5-3 \times 2)^{2}= \\ =(2 \times 2)^{2} \\ =(4)^{2}=16 \end{array}$	Spot the error. $\frac{m^{14}}{m^{7}}=\mathbf{m} 2$	Spot the error. $\begin{aligned} m^{5} & \times m^{6} \times m \times m^{3}= \\ & =m^{5+6+0+3} \\ & =m^{14} \end{aligned}$	$\begin{gathered} 9,15 \& \\ 16 \end{gathered}$	

*Face it. When you have mastered the content draw a $\cdot:$ OR if you are unsure, draw a $: \cdot$ and ask for help.
Copyright Mathbeacon2008-2015. License Agreement Per student/Per Year: This content may be used before but not after June 2016.
\qquad 36

Practice Test

- Write this test and do not look at the answers until you have completed the entire test.
- Mark the test and decide whether or not you are happy with the result. FACE IT!
- Successful students will go back in the guidebook and review any questions they got wrong on this test.

Knowledge:

Understanding

10. Explain the difference

between 2^{6} and 6^{2}.
11. Give an example and explain
the exponent law $m^{x} \times m^{y}=m^{x+y}$ the exponent law $m^{\times} \times m^{y}=m^{x+y}$
12. Does $(-2)^{4}=-2^{4}$? Explain.

Calculator skills

13. Evaluate $(1.2)^{20}=$	14. Evaluate $\sqrt{729}=$	15. Write 16384 as a power of
$\begin{array}{l}\text { Round your answer to 2 } \\ \text { decimals. }\end{array}$		2.

Evaluate:

16. $(-5)^{4}=$	17. $-2^{2}=$	$18 .(-1)^{401}(-1)^{5000}=$	$19 .-(-1)^{70}=$

Evaluate:

20. $2^{4}-2^{2}=$

Simplify.

23. $m^{20} m^{14} m^{10}=$	24. $2 m^{14}\left(5 m^{4}\right)=$	25. Write $19^{30} \times 19^{5} \times 19^{0} \times 19$ as a single power.	26. $-\left(-7 m^{4}\right)\left(-3 m^{2}\right)=$
27. Write $\frac{91^{12} \times 89^{10}}{91^{10} \times 89^{5}}$ as a single power.	28. $\frac{15 n^{15}}{5 n^{5}}=$	Write as a single power. 29. $\frac{3^{50} \times 3^{30}}{3^{40}} \times \frac{3^{20} \times 3^{40}}{3^{30}}=$	30. $-\frac{15 m^{7}}{12 m^{4}} \times \frac{-8 m^{8} m^{4}}{10 m^{3}}=$

Simplify:

31.	$m^{50} m^{30}$	
$n^{40} \times n^{20} m^{40}=$	$\left(m^{30}\right)^{2}(1576 m)^{0}\left(m^{5}\right)^{3}=$	$\left(2 m^{3}\right)^{2}$

Exponents Answers

1. Class conversation... option 2 is worth more in the long run.
2. $10, \$ 102400,10,2^{n}, 2, n$
3. $(5)(5)(5)(5)$
4. A^{3}
5. -1
6. 1
7. 8
37.625
8. 27
9. -9
10. 9
11. -8
12. $(7)(7)$
13. -4
14. $(-3)^{4}$
15. 16
16. $(8)(8)(8)(8)(8)$
17. -1
18. -9
19. 8
47.1
20. $(-2)(-2)(-2)(-2)$
21. m^{5}
22. $A A A B B$
23. $m^{4} G^{3}$
24. BBB
25. $A^{5} B^{4}$
26. Personal preference. I like exponential better because it is faster
27. $A, B \& C$ because the negative is not squared in any of them. They all equal -9.
28. $2^{3}=8$ and $3^{2}=9$. They are not equal.
29. All of them are positive.
30. All are negative.
31. B, D \& F are positive.
32. 1
33. -1
34. 1
35. -1
25.1
36. -1
37. -1
38. -1
39. -1
40. -1
41. -1
42. 1
33.1
43. 1
44. -1

Order of operations
75.1
76. -10
77. brackets
78. exponents
79. division
80. multiplication
81. addition
82. subtract
83. In order from left to right.
84. Same as 83.
85. 1
86. 52
87.1
88. 17
89. -17
90. -17
91. -17
92. 1
93. -1
94. 49
95.1
96.1
97. -10
98. 16
99.4
100. 0
101. $(6+3)^{2} \div 3=27$
102. $(9-5-2)^{3} \times(3+2)^{2}=200$
103. $\left[30-(3+2)^{2}\right] \times 10^{2}=500$
104. False $2^{3}+2^{2}=12$ and $2^{3} \times 2^{2}=32$
105. True. Both sides equal 320
106. A, C \& D
107. exponents
108. Subtraction

109. B	155. \$11742.93	196. m^{3}
110.2	156. 2097152	197. 1
111.2	157. \$1500	198. Subtract the exponents
112.3	158. $8^{2}-5^{2}$	199. m^{27}
113.5	159. $39 \mathrm{~cm}^{2}$	200. m^{7}
114.32	160. $6 y^{2}-6 x^{2}$	201. m^{11}
115.625	$161.96 \mathrm{~cm}^{2}$	202. m^{7}
116.256, -256	$\left[(5+2)^{2}-40\right]^{2}$	$203.7{ }^{11}$
117.32	162. $\left.(5+2)^{2}-40\right]=81$	204. $(-11)^{56}$
118.625		205. m^{64}
119.256	163. $5+\left(2^{3} \times 5-30\right)^{2}=105$	206. -9^{18}
120. -256		207. $-\mathrm{m}^{3}$
121.64	164. $405-5-(2 \times 10)^{2}=0$	208. m^{10}
122. -16	$165.510926783 \mathrm{~km}^{2}$	209. $(-11)^{10}$
123. 5		210. 8^{10}
124. 1	166. \$10,737,418.23	211. $(-4)^{100}$
125. 16	167. \$1,006,265.69	212. $(-11)^{22}$
126. 243	168. 14 YEARS 169. 2^{7}	213. -8^{100}
127.4	170. 2^{2}	214. 1
128. -32	171. Add the exponents.	215. m^{16}
129. -64	171.Add the exponents.	216. 10^{70}
130. -2	172. Subtract 4 from 12.	217. m^{10}
131.-343	173. m^{8}	218. m^{15}
132. 30	174. m^{6}	219. m^{11}
133. -25	175. $\mathrm{m}^{6} \mathrm{~m}^{9}$	$220.5{ }^{10}$
134. 25	176. $\mathrm{m}^{\text {173 }} \mathrm{m}^{7}$	221. -19^{2} or -361
135. -10	$178 . \mathrm{m}^{8}$	222.41
136. -24	178. m^{8} $179 \mathrm{~m}^{6}$	$223.7{ }^{10} \times 7^{6}$
137. -47	179. $\mathrm{m}^{\text {180 }} \mathrm{m}^{9}$	224. $(-6)^{17} \div(-6)^{15}$
138. -89		225. $-m^{7} \times m^{5}$
139. 51	181.Add the exponents $\text { 182. } m^{a} m^{b}=m^{a+b}$	226. $-11^{70} \div 11^{50}$
140. 1	182. $\mathrm{m}^{m}=\mathrm{m}$	227. $(-2)^{2} \times(-2)^{3}=(-2)^{5}=-32=-2^{5}$
141.2^{12}	183. added	228. $(-1)^{5} \times(-1)^{3}=(-1)^{8}=1 \neq-1=-1^{8}$
142. 2^{12}	184. $\frac{m^{a}}{m^{b}}=m^{a-b}$	229.23 $2^{3} 2^{2}=12 \neq 32=2^{5}$
143. 2^{6}	185. Subtracted	230.FTFT
144. 2^{3}	186.1	231. FFFF
145. 2^{8}	$187 \mathrm{~m}^{2}$	$232.8{ }^{4}$
146. 2^{5}	188. m^{3}	$233.9{ }^{13}$
147. 4	189.1	234. $(-7)^{4}$
148. 3	190. 1	235. $(-5)^{2}$
149. 2	191. m^{2}	236.32
150. 9	192. m^{3}	237.81
151.2	193. 1	$238 . \mathrm{m}^{12}$
152. 5		239. m^{8}
153.1	195. m^{2}	$240.10 \mathrm{~m}^{11}$
154. 0	195.m	241. $3 m^{4}$

154. 0

$242.10 m^{11}$	284.n	$328.7{ }^{5 x+5}$
$243.12 \mathrm{~m}^{11}$	285. $m^{2} n^{2}$	$329.7{ }^{45}$
$244.3 m^{4}$	286. $m n^{22}$	$330.7{ }^{207}$
$245.20 \mathrm{~m}^{11}$	287. mn	331. 7^{44}
246. $-15 m^{10}$	$288.2 m^{6}$	$332.7{ }^{60}$
$247.30 m^{62}$	$289.2 m^{4}$	$333.7{ }^{60}$
248. $-8 m^{56}$	$290.3 m^{9}$	334.32
$249.3 m^{4}$	291. n^{6}	335. 27
$250.2 \mathrm{~m}^{20}$	292.3 ${ }^{\text {x }}$	$2 M^{7}$
251. $2 m^{5}$	293.3 $3^{2 x-5}$	336. ${ }^{3}$
$252.4 m^{15}$	294.3 $3^{2 x+5}$	337. $11^{5 x+5}$
253. 3 m	$295.3^{3 x}$	338. $11^{2 x+4}$
253. $\frac{3 m}{2}$	$296.3^{4 x+3}$	339. $11^{6 x+18}$
	297. 3^{7}	340. $11^{2 x+8}$
254. $8 m^{14}$	298.3 $3^{-4 x+2}$	341. $11^{6 x+2}$
255. $\frac{3 m^{6}}{}$	299. 2^{300}	$342.11^{4 x-8}$
255. 2	300. $\left(2^{5}\right)^{2}=\left(2^{5}\right)\left(2^{5}\right)=2^{10} \neq 2^{7}$	343. $11^{4 x-8}$
256. $-12 m^{12}$	301. Yes. They both equal 1.	344. $11^{6 x-10}$
257. $-12 \mathrm{~m}^{10}$	302. $X=0$ and $2^{0}=1$	345.1
258. $-20 m^{29}$	$X=0$ and $5^{0}=1$	346. -1
259. m^{5}	303.16,8,4,2,1	347. 1
260. m^{4}	304. m^{10}	348. 1
261. m^{8}	$305 . \mathrm{m}^{9}$	349. 1
	$306.7{ }^{8}$	350. -1
262. m^{5}	307. m^{10}	351. 2
263. m^{4}	308. m^{9}	352. -4
264. m^{3}	$309.7{ }^{8}$	353. $x=2$ and $y=2$
$265.2{ }^{3 x}$	310. Multiply the exponents	354. $x=2$ and $y=2$
266.2 ${ }^{\text {X }}$	$311\left(m^{a}\right)^{b}=m^{a b}$	355. $(m \times n)^{a}=m^{a} n^{\underline{a}}$
$267.2^{3 x}$	311. $\left(m^{a}\right)=m^{a b}$	356. The same exponent
268.29 ${ }^{\text {X }}$	312. multiplied	357. $(\mathrm{m})^{a} \mathrm{~m}^{\text {a }}$
269.2 2^{x+y}	313. $m^{0}=1$	357. $\left(\frac{m}{n}\right)=\frac{m^{\underline{\underline{a}}}}{n^{\underline{a}}}$
$270.2^{\text {Y }}$	314.1	358. ${ }^{\text {n }}$ The same expenent
271. $2^{3 \mathrm{X}+1}$	315. n^{6}	358. The same exponent $359.5^{3} 2^{3}$
272. $2^{9 x}$	316. n^{6}	$359.5{ }^{3}$
273. $2^{3 y+4 \mathrm{X}}$	317. n^{15}	$360 \cdot m^{5} n^{5}$
274.2 $2^{8 x+6 y}$	318. n^{14}	361. $m^{10} n^{5}$
$275 . m^{2}+m^{8}$	319. n^{18}	$362.5^{3} 2^{3}$
$276 . \mathrm{m}^{10}$	320. n^{8}	$363 . m^{5} n^{5}$
$277.3 m^{2}$	321. n^{16}	364. $m^{10} n^{5}$
278. $m^{30}-m^{5}$	322. $n^{0}=1$	365. Each number has the
$279 . \mathrm{m}^{25}$	323. 9^{25}	same exponent.
280. mn	324. 9^{100}	366. $\frac{2^{5}}{3^{5}}$
281. n	325. 9^{9}	3 ${ }^{5}$
282. $m^{2} n^{2}$	326. 9^{20}	m ${ }^{3}$
283.mn	327. 7^{45}	367. $\overline{n^{3}}$

368. $\frac{16 m^{4}}{625 n^{4}}$
369. $\frac{2^{5}}{3^{5}}$
370. $\frac{m^{3}}{n^{3}}$
371. $\frac{16 m^{4}}{n^{4}}$
372. Each number is raised
to that exponent.
373. exponents are added
374. exponents are subtracted
375. exponents are
multiplied
376. equals 1
377. $\left(2^{3}\right)^{2}=\left(2^{3}\right)\left(2^{3}\right)=2^{6} \neq 2^{5}$
378. $m^{2} n^{2}$
379. $m^{3} n^{3}$
380. $25 n^{2}$
381. $8 n^{3}$
382. $m^{5} n^{5}$
383. $m^{7} n^{7}$
384. $4 n^{2}$
385. $-8 n^{3}$
386. $\frac{8}{27}$
387. $\frac{1}{32}$
388. $\frac{49}{4}$
389. $\frac{1}{16}$
390. $\frac{8 m^{3}}{n^{3}}$
391. $\frac{4 m^{2}}{25 n^{2}}$
392. $\frac{m^{2}}{25}$
393. $\frac{-1}{m^{5}}$
394. $m^{6} n^{3}$
395. $m^{6} n^{9}$
396. $-8 m^{6} n^{9}$
397. $m^{20} n^{8}$
398. $\frac{-8 m^{9}}{27 n^{15}}$
399. $\frac{-m^{15}}{n^{15}}$
400. $\frac{-m^{90}}{n^{150}}$
401. $m^{26} n^{7}$
402. $m^{14} n^{13}$
403. $-8 m^{12} n^{18}$
404. $-m^{35} n^{14}$
405. $m^{14} n^{4}$
407.25
406. $m^{20} n^{13}$
407. $m^{20} n^{3}$
408. $100 m^{6} n^{4}$
409. $-4 m^{5} n^{10}$
410. -200
411. $-\frac{2 m^{4} n^{5}}{9}$
412. When powers are multiplied, the exponents are added. See page 3 for example
413. When powers are divided, the exponents are subtracted. See page 3 for example
414. When a power is raised to an exponent, the exponents are multiplied. See page 3 for an example.
415. When a product is raised to an exponent, the exponent raises each variable to that exponent. See page 3 for an example.
416. When a quotient is raised to an exponent, the exponent raises each variable to that exponent. See page 3 for an example.
417. Anything to the power 0 equals 1.
418. Yes $4^{3}=64=8^{2}$
419. No because $10=2 \times 5$ and there is no way a multiple of 5 could equal a 2.
420. $\left(m^{3}\right)^{2}=\left(m^{3}\right)\left(m^{3}\right)=m^{6} \neq m^{5}$

Exponents Practice Test
Answers

1. $7 \times 7 \times 7 \times 7 \times 7$
2. $(-9)^{4}$
3. m^{18}
4. m^{6}
5. m^{80}
6. 1
7. $8 m^{30} n^{3}$
8. $\frac{m^{6}}{n^{9}}$
9. 8
10. $2^{6}=2 \times 2 \times 2 \times 2 \times 2 \times 2$ and $6^{2}=6 \times 6$
11. $5^{2} \times 5^{3}=5^{5}$
$=(5 \times 5) \times(5 \times 5 \times 5)$
$=5 \times 5 \times 5 \times 5 \times 5$
$=5^{5}$
12. NO:
$(-2)^{4}=(-2)(-2)(-2)(-2)=16$ and $-2^{4}=-\left(2^{4}\right)=-(2 \times 2 \times 2 \times 2)=-16$
13. 38.34
14. 27
15. 2^{14}
16. 625
17. -4
18. -1
19. -1
20. 12
21. Yes. Both equal 36 .
22. 8
23. m^{44}
24. $10 m^{18}$
25. 19^{36}
26. $-21 m^{6}$
27. $91^{2} \times 89^{5}$
28. $3 n^{10}$
29. 3^{70}
30. m^{12}
31. $m^{120} n^{-20}$ or $\frac{m^{120}}{n^{20}}$
32. m^{75}
33. $2 m^{2}$
34. m^{16}
35. $10^{5} \rightarrow 100000$ times more intense.
36. 2097152 bacteria
37. $\frac{4 m^{6}}{25 n^{4}}$
