Mathematics 8
Section 5.10 - Comparing Rates
Being able to compare ratios plays an important role in your everyday life.
Many grocery items come in different sized packages. Being able to figure out which is the best buy can end up saving you a bunch of money.

Consider the following situation. Which is the best deal?

Option A
355 mL
${ }^{\$ 0} 0.69$ / can

Option B
710 mL
\$1,15/bottle

Option C
$2 L=2000 \mathrm{~mL}$.
*2.89/bottle

* You need to breale the cost down to a per unit rate. You can choose anything, but working with 1,10,100,1000 is easier. We will use 100's.

Has a volume of 355 mL for 0.69

Option B:

$$
\frac{355}{100}=3.55 \text {, so cost of a } 100 \mathrm{~mL} \frac{2.69}{3.55}=\$ 0.19
$$

has a volume 710 mL for $\$ 1.15$

Option C:

$$
\frac{710}{100}=7.1 \text {, so cost of } 100 \mathrm{~mL} \frac{\$ 1.15}{7.1}=0.16
$$

has a volume of 2000 ml for $\$ 2.89 \%$

$$
\frac{2000}{100}=20, \text { sucust of } \frac{2.89}{100 \mathrm{~mL}}
$$

Page 1 of 2
Option C is the best buy.

Sometimes the calculations can be even easier than the one above.

In the situation above, each item contained a different amount of product.
If the amount of product is always the same, and your only option is the quantity to purchase, you proceed as below.

Package A
rolls
$\$ 0.99$

Padage B
Grolls
$\$ 3.99$

Package C
12 rolls
$\$ 6.99$

Since 12 is a multiple of both $2 \& 6$ we can use 12 as ow unit.
Package A:

$$
\begin{array}{ll}
2 \text { rolls } \$ 0.99 \\
\times 6 \text { to get to } 12 . & \$ 0.99 \times 6=\$ 5.94 / 12 \text { rolls }
\end{array}
$$

Package B:

$$
\begin{aligned}
& 6 \text { rolls } \$ 3.99 \\
& \times 2 \text { to get to } 12
\end{aligned}
$$

$$
\$ 3.99 \times 2=\$ 7.98 / 12 \text { rolls }
$$

Package C:

$$
12 r_{0} l_{s} \$ 6.99
$$

Package A is the best buyl.

Homework: pg. 363-306
Page 2 of 2
Q 5-8, 10a, 11a, 12, 11, $14 a-c, 15 a b$ $18 a, 20$.

