Solving Linear Equations and Inequalities

This booklet belongs to:

LESSON \#	DATE	QUESTIONS FROM NOTES	Questions that I find difficult
1.		Pg.	
2.		Pg.	
3.		Pg.	
4.		Pg.	
5.		Pg.	
6.		Pg .	
7.		Pg.	
8.		Pg.	
9.		Pg .	
10.		Pg.	
11.		REVIEW	
12.		TEST	

Your teacher has important instructions for you to write down.
\qquad
\qquad
\qquad

Solving Linear Equations and Inequalities

Objective	\#	Daily Topic	Key Ideas
P\&R3 model and solve problems using linear equations of the form:$\begin{aligned} & a x=b^{*} \\ & \frac{x}{a}=b^{\prime}, a \neq 0^{*} \\ & a x+b=c^{*} \\ & \frac{x}{a}+b=c^{\prime} a \neq 0^{*} \\ & a(x+b)=c^{*} \\ & a x+b=c x+d^{*} \\ & a(b x+c)=d(\text { ex }+f) \\ & \begin{array}{l} \text { *where } a, b, c, d, e, \text { and } f[C, \\ \text { CN, PS, } \mathrm{V}] \end{array} \end{aligned}$	1.	Introduction to Solving Linear Equations (pg. 4-7) - Model the solution of a given linear equation using concrete or pictorial representations, and record the process.	Algebra stones and Algebra Tiles. Solve $x+5=10, x-7=10,2 x=10, \frac{x}{3}=10$
	2.	Solving equations of the form $a x+b=c$ and $a / c+b=c$ (pg. $8-10$) - Solve a given linear equation symbolically. - Solve a given problem using a linear equation and record the process.	Solve. $4 m+3=31 \& \frac{2}{5} m-5=3$
	3.	Solving equations of the form $a(x+b)=c$ and $a x+b=c x+d(p g .11-14)$ - Determine, by substitution, whether a given rational number is a solution to a given linear equation.	Solve. $4(m+3)=40$ \& $6 m+3=2 m+15$ Is $m=5$ a solution to the equation $2(m+2)=14$?
	4.	More practice with $a x+b=c x+d$ (Pg. 15-18) - Identify and correct an error in a given incorrect solution of a linear equation	Solve. $2(m+1)+4 m=4(m-2)+6$.
	5.	Solve equation with fractions. (Pg. 19-23) - Solve a given linear equation symbolically.	Solve $\frac{m}{3}+\frac{2 m}{5}-\frac{1}{2}=2$
	6.	Solve Linear equations without numbers. (Pg. 24-28) - Solve a given linear equation symbolically.	Solve for m. $A(m+n)=B$
P\&R4 explain and illustrate strategies to solve single variable linear inequalities with rational coefficients within a problem-solving context.	7.	Introduction to linear inequalities (Pg. 29-33) - Translate a given problem into a single variable linear inequality using the symbols $\geq,>,<$, or \leq. - Determine if a given rational number is a possible solution of a given linear inequality.	Write an expression to represent the following statement: Melanie needs at least $\$ 280$ for snow boarding.
	8.	Inequalities that Include Addition and Subtraction (Pg. 34-37) - Generalize and apply a rule for subtracting a positive or negative number to determine the solution of a given inequality. - Generalize and apply a rule for multiplying or dividing by a positive or negative number to determine the solution of a given inequality. - Solve a given linear inequality algebraically and explain the process orally or in written form. - Verify the solution of a given linear inequality using substitution for multiple elements in the solution.	Solve $2 x+5<25$ and verify your solution. True or False. If $-2 x>-10$ then $x>5$.
	9.	Solving Problems with Linear Inequalities (Pg. 38-41) - Compare and explain the process for solving a given linear equation to the process for solving a given linear inequality. - Graph the solution of a given linear inequality on a number line. - Compare and explain the solution of a given linear equation to the solution of a given linear inequality. - Solve a given problem involving a single variable linear inequality and graph the solution.	Vertical Wireless charges $\$ 50$ / month plus $\$ 0.25$ for all minutes above 400 minutes per month. Frue Gal has decided that she does not want to pay more than $\$ 70$ per month. Write an inequality to represent how many minutes she can use per month without going over her $\$ 70$ limit. Approximate your solution on the number line
	10.	Chapter Review and Practice Test - Help students develop sound study habits. - Many students will graduate high school saying they do not know how to study for math tests.	
	11.	Go over Practice Test	
	12.	Unit Evaluation	

***Pages 22-28 are extentions.

Key Terms

	Definition	Example
Binomial	A polynomial consisting of two terms.	$2 b^{3}+5$ Is a binomial
Coefficient	A number in front of a variable.	$2 b^{3}+5$ The 2 is the coefficient.
Constant	A number that does not change.	$2 b^{3}+5$ The 5 is the constant.
Equation	A statement where two expressions are equal.	$2 b^{3}+5=2 b+1$ is an equation. $A=\pi r^{2}$ Is an equation.
Evaluate	Determine the answer.	Evaluate $2+3 \rightarrow 5$
Expand	A direction to multiply the number in front of the brackets by each of the terms inside the brackets.	$2 m(3 m-5 n)=6 m^{2}-10 m n$
Expression	A collection of variables and or numbers that represents a quantity.	$2 b^{3}+5$ Is an expression. πr^{2} Is also an expression.
Inequality	A statement where two expressions are not equal.	$6>1,2 x+3<5$ and $x \neq 4$ are examples of inequalities.
Inverse operation	Inverse operations have opposite effects.	Adding and subtracting are inverse operations.
Like Term	Terms that have the same variables to the same exponents.	$5 \mathrm{~m}, 3 \mathrm{~m}$ and m are like terms. 2 n \& 5 m are not like terms.
Monomial	An algebraic expression consisting of one term.	$2 b^{3}$ is a monomial. 5 is a monomial.
Simplify	A direction to combine or reduce terms.	$4 m+5 m-3 m$ can be simplified to 6 m .
Solve	A direction to determine the value of a variable.	The solution to $x+8=18$ is $x=10$.
Substitute	A direction to replace the variable(s) with specific values.	If 3 were substituted for x in $2 x+1$, the value of the expression would be 7 .
Term	A quantity. A constant, a variable or the product of a constant and a variable could represent this quantity.	$2 b^{3}+5$ $2 b^{3}$ is a term. 5 is a term.
Trinomial	A polynomial consisting of three terms.	$2 b^{3}+2 m+5$
Variable	A letter that is used to represent a number.	$2 b^{3}+5$ The b is the variable.

Introduction to Solving Linear Equations

Challenge \#1: Solve each riddle using any strategy that works.

What made certain riddles harder than others?

\& Introduction to Algebra Stones and Algebra Tilesú

Challenge \#2: Write an expression to represent each set of algebra stones.

$$
\text { Let }\rangle=x, \diamond=-x, o=1 \text { and } \bullet=-1
$$

5. Expression: | | |
| ---: | ---: |
| $\$ 0>$ | oo |
| $\$ 0>$ | oo |

7. Expression:
\qquad
8. Expression:

One of the major contributions of mathematics to our world has been to provide tools to solve complex problems in an orderly, repeatable and understandable way. Do you think you can figure out what x equals in $\frac{2}{3} x+7=5(x+1)-7$ quickly? Could you explain to a friend how to solve it? Could you create a system to solve this problem?

Challenge \#3: Write an equation to represent each set of algebra stones.

Let $\Delta=x,=-x, o=1$ and $\bullet=-1$

Write an equation:

Write an equation to represent each set of algebra tiles and solve the equation.

Let clear bars equal x and the each clear little square equal 1. Shading denotes negative numbers.
Write an equation for each set of algebra tiles:

18. Modify the algebra tiles to show how many one tiles would be needed to balance one x tile?

20. Modify the algebra tiles to show how many one tiles would be needed to balance one x tile?

Will the scales be balanced after each change? Modify each drawing to support your answer.

21. If 5 is added to both sides, will the scales be balanced?	22. If 5 is subtracted from both sides, will the scales be balanced?	23. If both sides are multiplied by 2 , will the scales be balanced?	24. If both sides are divided by 2 , will the scales be balanced?
Ooo Ooo $\quad \begin{aligned} & \text { Ooo } \\ & \text { 000 }\end{aligned}$	Ooo Ooo $\quad \begin{aligned} & \text { Ooo } \\ & \text { 000 }\end{aligned}$	Ooo Ooo $\quad \begin{aligned} & \text { Ooo } \\ & \text { 000 }\end{aligned}$	ooo ooo
25. What happens to $m-5=6$ if both sides of the equation are increased by 5 ?	26. What happens to $m+5=6$ if both sides of the equation are decreased by 5 ?	27. What happens to $\frac{m}{2}=5$ if both sides of the equation are multiplied by 2?	28. What happens to $2 m=6$, if both sides of the equation are divided by 2?

Definition: Inverse Operations
29. The inverse of adding 5 is \qquad 5.
30. The inverse of subtracting 7 is \qquad 7.
31. The inverse of multiplying by 2 is \qquad by 2.
32. The inverse of dividing by 2 is \qquad by 2.
33. Additive inverses, (+,-) , add to and multiplicative inverses, (x, \div), multiply to,

Perform the inverse operation to isolate x.
34. $x+5=10$
35. $x-7=10$
36. $2 x=10$
37. $\frac{x}{3}=10$

Write an equation and use algebra stones to solve the equation.

What specific operation must be performed to isolate x ?

$41 . x+3=14$	$42 . x-6=10$	$43.3 x=15$	$44 . \frac{x}{4}=20$
$45 .-5 x=30$	$46.7+x=16$	$47 . \frac{x}{-3}=-9$	$48 .-18=-3 x$

«Important noté

49. It is very possible to do the above problems without showing any work. These are warm up questions and practicing these skills now, will make solving questions like $2(m+1)+4 m=4(m-2)+6 \& 2(m-1)+\frac{5 m}{2}=\frac{2}{3}(m+3)$, possible. By the way the answers are $m=-2$ and $m=24 / 23$. It took me about 1 minute and ten seconds to solve both \odot Can you beat my time?

Challenge \#4: Write an equation to represent each set of algebra stones.

Challenge \#5: Write an equation to represent each set of algebra tiles and solve the equation.

"

Challenge \#6:

56. Solve. $4 \mathrm{~m}+3=31$	Write down the steps to solve the challenge to the left.
	Write down the steps to solve the challenge to the left.
How could you check to make sure your solution is right?	

Solve for m.
57. Solve. $4 m+3=31$

Subtract 3 from both sides.
$4 m+3-3=31-3$
$4 m=28$
Divide both sides by 4 .

$$
\begin{gathered}
\frac{4 m}{4}=\frac{28}{4} \\
m=7
\end{gathered}
$$

Check your answer by substituting $m=7$ into the original equation. $4(7)+3=28$
$m=7$ is the solution.

58. $3 m-5=25$	$59.5 m-15=40$
$60.6 m-5=-25$	$61 .-2 m-5=25$

How many o are needed to balance one \rangle ?

Modify the algebra tiles to show how many one tiles would be needed to balance one x tile?

Challenge \#7:
68. Solve. $\frac{2}{5} m-5=3$

Write down the steps to solve the challenge to the left.
\qquad
\qquad
\qquad
\qquad

Solve equations involving fractions.

69. Solve. $\frac{2}{5} m-5=3$ Eliminate the fractions by multiplying both sides by five. $\left(\frac{2}{5} m-5=3\right) 5$	70. Solve. $\frac{3}{2} m-5=25$	71. Solve. $\frac{5 m}{2}-15=10$
Multiply every term by five. $\frac{10}{5} m-25=15$ Reduce, add 25 to both sides and divide both sides by $\begin{gathered} \text { two. } \\ 2 m-25+25=15+25 \\ 2 m=40 \\ 2 m \quad 40 \end{gathered}$	72. Solve. $\frac{6 m}{5}-5=-17$	73. Solve. $-\frac{2 m}{3}-5=25$
$\begin{aligned} & 2 \\ & m=20 \end{aligned}$ Check your answer by substituting $m=20$ into the original equation. $\begin{gathered} \frac{2}{5}(20)-5 ? 3 \\ 8-5=3 \\ m=20 \text { is the solution. } \end{gathered}$	74. Solve. $-10=\frac{-3 m}{4}+5$	75. Solve. $\frac{m}{3}-2=-29$
76. Solve. 77. Solve. $-2 m-5=39$ $-\frac{4 m}{3}-4=5$	78. Solve. $-25=-4 m+15$	79. Solve. $\frac{5 m}{3}-7=10$
80. $\frac{3 m}{5}-5=-3$ 81. Spot the error and solve. $-33=3 m+3$ $\begin{aligned} & -30=3 m \\ & -10=m \end{aligned}$	82. Spot the error and solve. $\begin{aligned} &-\frac{m}{3}-5=25 \\ &-m-5=75 \\ &-m=80 \\ & m=-80 \end{aligned}$	83. Is the solution to $3 m+6=-30$ correct? Divide by 3 $\begin{gathered} m+2=-10 \\ m=-12 \end{gathered}$

Write an equation and solve the equation.
84. A number is multiplied by negative two and then decreased by five and the result is twenty-nine. Find the number.
85. The sum of three times a number and three is negative twenty-seven. Find the number.
86. Three times the opposite of a positive number increased by five is negative twenty-five. Find the number.

Write an equation and solve the equation.
87. Bock Sout has 68 meters of fencing to build a fence. He wants the length to be 4 meters longer than the width. Write an algebraic equation and determine the dimensions of the rectangular fence.

88. Guud Riter received $\$ 400$ dollars in advance plus $\$ 2$ for every Internet download of his EBook. How many downloads are needed for Guud to make $\$ 4200$?
89. The formula to convert degrees Celsius to degrees Fahrenheit is $F=\frac{9}{5} C+32$. Use this formula to convert 102 Fahrenheit to degrees Celsius.

Challenge \#8:

\qquad
\qquad
\qquad
\qquad

Solving Linear Equations that include Brackets

91. Solve. $4(m+3)=40$ Expand the left side. $4 m+12=40$ Subtract 12 from both sides $\begin{gathered} 4 m+12-12=40-12 \\ 4 m=28 \end{gathered}$	92. $3(m-5)=25$	93. $-5(m-1)=20$
Divide both sides by 4 . $\begin{gathered} \frac{4 m}{4}=\frac{28}{4} \\ m=7 \end{gathered}$	94. $6(m-5)=-6$	95. $-2(m-5)=25$
Check your answer by substituting $m=7$ into the original equation. $4(7+3)=40$ $\mathrm{m}=7$ is the solution.		

Challenge \#9: Draw a picture to represent the equation and solve.

$$
\text { Let } \diamond=x, *-x, o=1 \text { and } \bullet=-1
$$

Challenge \#10:

99. Which of the following number(s) is a Explain how to answer the question. solution to $m+5=2 m+4 ;-1,1,5$
\qquad
\qquad
\qquad
\qquad
\qquad

Solutions to Equations

Definition:

A number is a solution to an equation if it can be substituted into the equation and make the left side of the equation equal to the right side of the equation.

Rewrite the above definition using your own words or an example.
100. Is $m=1$ a solution to $m+5=2 m+4$?

Let's check. When $m=1$ is substituted into the equation, the left side is equal to the right side.
(1) $+5=6$ and $2(1)+4=6$

Since $6=6, m=1$ is a solution.
101. Is $m=5$ a solution to $m+5=2 m+4$?

Let's check. When $m=5$ is substituted into the equation, the left side does not equal the right side.
$(5)+5=10$ and $2(5)+4=14$
Since $10 \neq 14, m=5$ is not a solution.

State whether each number is a solution to each equation.

102. Is $m=12$ a solution to the	103. Is $m=8$ a solution to the	104. Is $m=5$ a solution to the
equation $m+2=14$?	equation $m-2=10 ?$	equation $4 m+2=22$?

Solve each equation and check your answer.

$108 .-2(m-5)=24$	$109 .-27=3(m+3)$	$110 .-25=-3(m-5)$	$111.3(m-2)=-21$

Challenge \#11: How many o are needed to balance one \downarrow ?

$$
\text { Let }\rangle=x,=-x, o=1 \text { and } \cdot=-1
$$

Challenge \#12: Write an equation and solve it by rearranging the algebra tiles.

Challenge \#13:

118. Solve. $6 m+3=2 m+15$

Write down the steps to solve the challenge to the left.
\qquad
\qquad
\qquad
\qquad

Solve equations that have variables on both sides.

Challenge \#14:

130. A square sheet of paper is folded in half to form a rectangle. The perimeter of the rectangle is 33 cm . Determine the dimension of the square if the length of the rectangle is twice as long as the width?

Solve for \diamond using algebra stones.

$$
\text { Let } \Delta=x,=-x, o=1 \text { and } \cdot=-1
$$

134. Solve for \rangle.

Solve for x using algebra tiles.

A Strategy to Consider

Now that the equations are getting more complex, it may helpful to review these steps.

- Eliminate Fractions by multiplying both sides by the common denominator.
- Eliminate brackets by Expanding.
- Collect Like Terms on each side of the equal sign.
- Get variables to same side by Subtracting or Adding variables to each side.
- Get constants to same side by Subtracting or Adding constants to each side.
- Isolate the variable by Dividing both sides by the coefficient.

The acronym is FELTSAD*. Some people have felt sad: until they figure out how to solve the equation. *(Apply from left to right. The F and E can be applied in any order. The S and A can be applied in any order). Here is an example of this.

	$2(m-1)+\frac{5 m}{2}=\frac{2}{3}(m+3)$	This is a very difficult question. You will be able to do this at the end of this unit.
F	$\left[2(m-1)+\frac{5 m}{2}=\frac{2}{3}(m+3)\right] \times 6$	F. Fractions. Multiply each side by 6.
E	$12(m-1)+\frac{30 m}{2}=\frac{12}{3}(m+3)$	E. Expand. Eliminate the brackets.
	$12(m-1)+15 m=4(m+3)$	
LT	$12 m-12+15 m=4 m+12$	LT. Like Terms. Collect like terms on the left side.
S	$27 m-12=4 m+12$	S. Subtract. Subtract $4 m$ from both sides.
A	$23 m-12=12$	A. Add. Add 12 to both sides.
D	$23 m=24$	D. Divide. Divide both sides by 23.
	$m=\frac{24}{23}$	Check your answer. This answer would be best checked

Challenge \#15:

140. Solve. $2(m+1)+4 m=4(m-2)+6$.

Write down the steps to solve the challenge to the left.

141. Solve. $2(m+1)+4 m=4(m-2)+6$. F.E.LT.S.A.D. Expand both sides. $2 m+2+4 m=4 m-8+6$ Collect like terms on both sides. $6 m+2=4 m-2$ Subtract $4 m$ from both sides. $\begin{gathered} 6 m-4 m+2=4 m-4 m-2 \\ 2 m+2=-2 \end{gathered}$	142. Solve. $4(m-1)-6 m=-10(2 m-1)-1$
Subtract two from both sides and divide both sides by two. $\begin{gathered} 2 m+2-2=-2-2 \\ 2 m=-4 \\ \frac{2 m}{2}=\frac{-4}{2} \\ m=-2 \end{gathered}$ Check your answer. $M=-2$	143. Solve. $3(m-1)+6 m=5(2 m-1)+1$
144. Solve. $3(m-1)+m=5(m-1)+3 m$	145. Spot the error: $4(m-1)+2=3(2 m-1)+1$ $\begin{aligned} & 4(m-1)+2=3(2 m-1)+1 \\ & 4 m-4+2=6 m-1+1 \\ & 4 m-2=6 m+0 \\ & -2=2 m \\ & -1=m \\ & m=-1 \end{aligned}$

Solve.

$146.2(m-1)+m=5(m-1)+3 m$	$147 .-2(m-1)+2=3(2 m-1)+1$	$148.5+5 m-15=30-10$

Solve for m.
149. Solve.
$4 m-2+3 m=-24+4$

Challenge \#16: Eliminating Fractions

152. Do not solve $\frac{m}{3}=5$. In words
explain what you could do to eliminate the fraction.
153. Do not solve $\frac{2 m}{5}=4$. In words explain what you could do to eliminate the fraction.
154. Do not solve $\frac{m}{3}+\frac{2 m}{5}=2$. In words explain what you could do to eliminate the fractions.

Challenge \#17:

155. Solve $\frac{m}{3}+\frac{2 m}{5}-\frac{1}{2}=2$.

Write down the steps to solve the challenge to the left.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Solving equations that require eliminating more than one fraction.

Challenge \#18:

161. Solve $\frac{m+2}{3}=\frac{2 m-1}{5}$.

Write down the steps to solve the challenge to the left.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Solve for m.

162. Solve $\frac{m+2}{3}=\frac{2 m-1}{5}$ *. F.E.LT.S.A.D. Multiply both sides by 15 . $\left(\frac{m+2}{3}=\frac{2 m-1}{5}\right) \times 15$ Multiply every term by 15. $\frac{15(m+2)}{3}=\frac{15(2 m-1)}{5}$ Reduce and expand.	163. Solve. $\frac{5 m+2}{2}=\frac{3 m-1}{3}$	164. Solve. $\frac{m+5}{4}=\frac{2 m+4}{5}$
$5 m+10=6 m-3$ Subtract 5 m from both sides. $\begin{gathered} 10=m-3 \\ m=13 \end{gathered}$ *This step could be achieved by crossmultiplying at the beginning.	165. Solve. $\frac{2 m-2}{5}=\frac{-2 m+1}{3}$	166. Solve. $\frac{3 m+2}{3}=\frac{m+1}{5}$
167. Spot the error and solve. $\frac{m}{4}+5 m=\frac{1}{2} m+2$	168. Spot the error and solve. $\frac{3 m-2}{4}=\frac{-m+1}{3}$	169. Solve. $\frac{5 m}{2}+\frac{m}{5}=\frac{1}{2} m+5$
$\begin{aligned} \frac{4 m}{4}+5 m & =\frac{4}{2} m+8 \\ m+5 m & =2 m+8 \\ 6 m & =2 m+8 \\ 4 m & =8 \\ m & =2 \end{aligned}$	$\begin{aligned} \frac{36 m-24}{4} & =\frac{-12 m+12}{3} \\ 12 m-6 & =-4 m+3 \\ 16 m & =9 \\ m & =9 / 16 \end{aligned}$	

Solve for m.
170. Solve. $\frac{m-2}{5}=\frac{-2 m+1}{4} \quad$ 171. Solve. $\frac{m}{2}+\frac{2 m}{3}-\frac{1}{4}=1 \quad$ 172. Solve. $\frac{m+1}{5}=\frac{-3 m+2}{3}$

What should you do first? Expand or eliminate fractions? Does it matter?
Challenge \#19:
173. Solve $\frac{2}{3}(m+5)+1=6$.

Write down the steps to solve the challenge to the left.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Challenge \#20: Use a different strategy than above.
174. Solve $\frac{2}{3}(m+5)+1=6$.

Write down the steps to solve the challenge to the left.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Solve.
175. Solve $\frac{2}{3}(m+5)+1=6$
F.E.LT.S.A.D.

Expand the left side.

$$
\frac{2}{3} m+\frac{10}{3}+1=6
$$

Multiply both sides by 3 .

$$
\begin{gathered}
\left(\frac{2}{3} m+\frac{10}{3}+1=6\right) \times 3 \\
\frac{6}{3} m+\frac{30}{3}+3=18
\end{gathered}
$$

Reduce and collect like terms on the left side.

$$
\begin{gathered}
2 m+10+3=18 \\
2 m+13=18
\end{gathered}
$$

Subtract 13 and divide by two.

$$
\begin{aligned}
& 2 m=5 \\
& m=2.5
\end{aligned}
$$

Eliminate fractions first!

178. Solve $\frac{2}{3}(m+5)+1=6$
F.E.LT.S. A.D.
Eliminate fractions by multiplying both
sides by three.
$\left(\begin{array}{l}2 \\ 3\end{array}(m+5)+1=6\right) \times 3$
Multiply each term by three.
$\frac{6}{3}(m+5)+3=18$
Reduce, expand and collect like terms.
$2(m+5)+3=18$
$2 m+10+3=18$
$2 m+13=18$
Subtract 13 and divide by two.
$2 m=5$
$m=2.5$

179. Eliminate fractions and then solve.
$\frac{4}{6}(m+4)-1=6$
180. Eliminate fractions and then solve.

$$
\frac{1}{2}(m-2)+4=6
$$

*Which way do you like better? Expanding first or getting rid of fractions first?

Solve.

181. Spot the error and solve $\frac{1}{3}(m-2)+4=6$	182. $\frac{3}{4}(m-1)+4=6$	183. $\frac{5}{2}(m-2)+2=5$
$\left(\frac{1}{-}(m-2)+4=6\right) 3$		
$\frac{3}{3}(3 m-6)+12=18$		
$\begin{aligned} 3 m-6+12 & =18 \\ 3 m+6 & =18 \end{aligned}$		
$\begin{aligned} 3 m & =12 \\ m & =4 \end{aligned}$		
$\frac{1}{3}(m-2)+4=6$		
184. Solve. $\frac{1}{2}(m-1)+2=\frac{1}{3}(m-2)$	185. Solve. $\frac{1}{3}(3 m-2)+2=\frac{1}{2}(m-4)$	186. Spot the error and solve. $\begin{aligned} & \quad \frac{1}{2}(m-1)+2=\frac{1}{5}(m-3) \\ & \frac{m}{2}-\frac{1}{2}+\frac{2}{2}=\frac{m}{5}-\frac{3}{5} \\ & \left(\frac{m}{2}-\frac{1}{2}+\frac{2}{2}=\frac{m}{5}-\frac{3}{5}\right) 10 \\ & \frac{10 m}{2}-\frac{10}{2}+\frac{20}{2}=\frac{10 m}{5}-\frac{30}{5} \\ & 5 m-5+10=2 m-6 \\ & 5 m+5=2 m-6 \\ & 3 m=-11 \\ & m=-\frac{11}{3} \end{aligned}$

Solving Linear Equations Without Numbers

Challenge \#21:

187. Show that the solution to $a(m+n)=h$ is

$$
m=\frac{h-a n}{a}
$$

188. Is $m=\frac{h-a n}{a}$ the same as $m=\frac{h}{a}-n$? How do you know?

Solve for m.

189. $m+5=30$	190. $m-5=30$	191. $5 \mathrm{~m}=30$	192. $\frac{m}{2}=30$
193. $m+n=30$	194. $m-n=30$	195. $n m=30$	196. $\frac{m}{n}=30$
197. $m+n=x$	198. $m-n=x$	199. $n m=x$	$\text { 200. } \frac{m}{n}=x$
201. $m+n g=x$	202. $m-n g=x$	203.ngm $=x$	$\text { 204. } \frac{m}{n g}=x$

Solve for m.

205. $2 m+5=35$	206. $2 m-5=35$	207. $2(m+1)=30$	208. $\frac{m}{2}+10=30$
$209.2 m+n=35$	210. $2 m-n=35$	211. $2(m+n)=30$	212. $\frac{m}{2}+n=30$
213. $A m+n=B$	214. $A m-n=B$	215. $A(m+n)=B$	216. $\frac{m}{A}+n=B$

Challenge \#22:

217. The formula $F=\frac{9}{5} C+32$ converts degrees

Write down the steps to solve the challenge to the left. Celsius to degrees Fahrenheit. Solve for C and write a formula that converts Fahrenheit to Celsius.
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Rearrange a formula to solve equations
218. The formula $F=\frac{9}{5} c+32$ converts degrees Celsius to degrees Fahrenheit. Solve for c and write a formula that converts Fahrenheit to Celsius.

Possible solutions strategy:
Subtract 32 from both sides.
$F-32=\frac{9}{5} C$
Multiply both sides by 5
$\left(F-32=\frac{9}{5} C\right) 5$
$5(f-32)=9 C$
Divide both sides by 9 .
$\frac{5}{9}(f-32)=C$
Other strategies could lead to:
$\frac{5 f}{9}-\frac{160}{9}=C$
219. The formula for the area of a triangle is $A=\frac{b h}{2}$. Annie knows the value of the area and the height. Write a formula to find the base value. (Solve for b.)
220. Determine the length of the base if the Area is $46 \mathrm{~cm}^{2}$ and the height is 10 cm long.
221. The formula for the perimeter of a rectangle is $P=2(w+1)$, Sonil knows the perimeter and the length, write a formula to help him find the value of w. (Solve for w.)
222. Determine the width if the perimeter is 59 cm and the length is 12 cm long.

Challenge \#23:

223. Solve.

$$
\frac{M}{2}=\frac{3}{5}
$$

224. Solve. $\quad \frac{1}{M}=\frac{3}{5}$.

Write down the steps to solve the challenge to the left.

Write down the steps to solve the challenge to the left.	Write down the steps to solve the challenge to the left.

\qquad

Solve for M.

225. $\frac{M}{2}=\frac{3}{5}$ Solution: Multiply by lowest common denominator. $\begin{aligned} & \left(\frac{M}{2}=\frac{3}{5}\right) \times 10 \\ & \frac{10 M}{2}=\frac{30}{5} \\ & 5 M=6 \end{aligned}$ Divide both sides by 5 . $M=\frac{6}{5}$	226. $\frac{1}{M}=\frac{3}{5}$ Solution: Multiply by lowest common denominator. $\left(\frac{1}{M}=\frac{3}{5}\right) \times 5 m \rightarrow$ Divide both sides by 3 . $\begin{aligned} & \frac{5 M}{M}=\frac{15 M}{5} \\ & 5=3 M \end{aligned}$ Divide both sides by 3 . $M=\frac{5}{3}$	$\text { 227. } \frac{5}{2}=\frac{M}{5}$	$\text { 228. } \frac{1}{2}=\frac{3}{M}$
$\text { 229. } \frac{M}{3}=\frac{3}{2}$	$\text { 230. } \frac{5}{M}=\frac{3}{2}$	$\text { 231. } \frac{4}{3}=\frac{M}{5}$	$\text { 232. } \frac{2}{3}=\frac{5}{M}$

Solve for the given variable.

233. Solve for M. $A B M=C$	$\text { 234. Solve for } B \text {. }$ $A B M=C$	235. Solve for M. $\frac{M}{A B}=C$	236. Solve for B. $\frac{M}{A B}=C$ Hint: Cross multiply $M=A B C$ Divide both sides by $A C$. $B=\frac{M}{A C}$
237. Solve for M. $\frac{A B}{M}=C$	238. Solve for B. $\frac{A B}{M}=C$	239. Solve for M. $\frac{M}{A}=\frac{C}{B}$	240. Solve for B. $\frac{M}{A}=\frac{C}{B}$

Solve for m.

$241 . A(M+N)=A B$	$242.5 M+2 N=6 B$	$2 A(M-N)=8$
$244.4 N(A+M)=10$		

Introduction to Linear Inequalities

Challenge \#24:

247. Melanie is planning a snowboarding trip. She needs at least $\$ 280$ to go on the trip. Her know-it-all big brother writes a mathematical statement to express this situation.

Here is what he came up with:

- Let $m=$ money needed and $m=\$ 280$

She really wants to correct him, but his answer seems right. Would you make any changes to the above statements?

Which of the following are true?
A. 50 is a solution
B. -10 is a solution
C. 1 is a solution
D. X is greater than 1.
E. X is greater than or equal to one.
F. $x<1$
G. $x \leq 1$
H. $x>1$
I. $x \geq 1$
249. Which letter or letters is(are) the best answer(s)?

Inequality notes:
\qquad
\qquad
\qquad
\qquad

Use one of the symbols >or < to complete each inequality.

| 250.5 | $<$ | 951.20 | -4 | 252.5 | -10 | 253.11 | -13 | $254 .-3$ | -2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $255 .-4$ | -7 | $256 .-3$ | 10 | $257 .-7$ | 3 | 258.24 | 12 | 259.5 | 5.1 |
| | | | | | | | | | |

Define a variable and use one of the symbols; $=, \neq,>, \geq,<, \& \leq$, to represent each situation

260. Melanie needs at least $\$ 280$ for snow boarding.	261. Dave makes less than \$15 in tips per night	262. Al makes more than $\$ 100$ a day
$x \geq 280$ *Any variable could be used as long as you define it		
263. Baby David weighs less than 12 pounds	264. Joni makes at least $\$ 100$ more per year than Jerry	265. Sall's minimum height is 148 cm tall.
266. Hal makes $\$ 210$ per day	267. Ray doesn't make more than $\$ 120$ a day.	268. Rita's maximum vertical leap is 20 inches

Which of the statements is the given number a solution to?

269.3 .5	270.4

A. $x>2$
B. $x \geq 4$
C. $x \leq 3$
D. $x<-2$
A. $x>4$
B. $x \geq 4$
C. $x \neq 100$
D. $x<4$
271.7
A. $x>6.99$
B. $x \geq 7.01$
C. $x \neq 7$
D. $x \leq 7$
272.-2
A. $x>-1$
B. $x \geq 3$
C. $x \neq 7$
D. $x \leq-1$

Challenge \#25: Write each graph in words and as an equation or an inequality.

273.					
-2	-1	0	1	2	3

Graph each of the following statements on the number line.

Word Statement:
X is greater than 1 .

Word Statement:

Inequality:

A solid dot is used on the number line for the following $=, \leq, \geq$.
A hollow dot is used on the number line for the following $>,<, \neq$.

Word Statement:
X is less than on equal to 2 .

Word Statement:

Inequality:

281.

Word Statement:
X does not equal -1

Inequality: $x \neq-1$

Word Statement:

Inequality:

Word Statement:

Inequality:

Sketch a line graph to represent each inequality.

285. $x>3$	286. $x \neq-1$	287. 1 > x	288. $x \geq 3$	289. $x \neq 2$
3	-1	1	3	2

Sketch each inequality

Use a symbol to write an inequality that corresponds to each statement

293. X is greater than 7.	294.3 .2 is less than or equal to X.	$295 . \mathrm{m}$ is at most 7.	$296 . n$ is positive
297.y does not equal 2.	$298 . X$ is at least 4.	$299 . X$ is negative.	$300 . Y$ is equal to 4.

Challenge \#26:

301. Write an inequality for all the numbers bigger than or equal to negative 4 and less than 11.

Sketch a line graph to represent each inequality.

$304 . x>-2.7$	$305 . x \neq \frac{2}{5}$	$306.7 .8>x$	$307 . x \geq-1.33$

Write a compound inequality.
308. Write an inequality for all the numbers bigger than or equal to negative 4 and less than 11.

Possible solution strategy

- Bigger than or equal to $-4 \rightarrow x \geq-4$
- Less than $11 \rightarrow x<11$
- Combine $-4 \leq x<11$

309. Write an inequality for all the numbers less than negative two and greater than negative ten.
310. Write an inequality for all the numbers that are at least -1 and less than 3.

For each inequality, graph the possible values of x on the number line.

Define a variable and write an inequality to express each situation.
317. Sellotz earns a 9\% commission on all sales over $\$ 5000$. Write an inequality to represent all the dollar values that allows Sellotz to earn a commission.

Possible solution Strategy:

Define the variable: $C=$ Commission
Inequality: C> $\$ 5000$
318. Bill cans pickled green beans. The mass must be between 220 grams and 229 grams inclusively or his supervisor will reject the can. Express the inequality algebraically.
319. Insurance companies charge more money for drivers who drive further. The rate is increased for those drivers who live more than 15 km from their job. Express all the distances that will not lead to an insurance rate increase.
320. Grissinda is building a square pen for her pet hedge hog in her back yard. She has no more than 20 m of fencing available. Write an inequality to represent all the possible side lengths.
321. William wants to build a square patio for summer BBQs. The patio can be at most $16 \mathrm{~m}^{2}$. Write an inequality to represent all the possible side lengths.

Challenge \#27:
322. List three solutions to $x+5 \geq 7$. Solve $x+5 \geq 7$ on the number line.
\square

Write $x+5 \geq 7$ in a more efficient way

Check three solutions from the simplified inequality with the initial inequality to test your answer.

Generalize a rule for adding and subtracting rational numbers.

323. Given $x+a>5$ or $x+a \geq 5$ explain what you	324. Given $x-a>5$ or $x-a \geq 5$ explain what you
need to do to isolate x.	need to do to isolate x.

Solve for x and verify your solution by substituting 2 different numbers into the inequality.

325. $x+5 \geq 7$	326. $x-5<-4$	327. $2 x>8$
Possible solution strategy: - $X+5 \geq 7$		
Subtract five from both sides. - $X+5-5 \geq 7-5 \rightarrow X \geq 2$		
Test three numbers that are greater than or equal to 2. E.g. 2,3, \& 10 $\text { (2) })+5=7 \geq 7(3)+5=8 \geq 7, \&(10)+5=15 \geq 7$		
328. $2 x+5<25$	329. $3 x-2 \neq-20$	330. $2(x+5)<18$

Challenge \#28:
331. Sargent has up to 52 meters of fencing material available to build a rectangular fence. He wants his fence to be 4 meters longer than it is wide. Write and solve an inequality to represent the possible side lengths.
332. A golf club charges a yearly fee of $\$ 2000$ plus $\$ 100$ for each round of golf. Ty Ger cannot afford anymore than $\$ 4500$ per year for golf. Express the number of rounds of golf he can play as an inequality.

Define a variable, write an inequality and solve the inequality.
333. Sargent has up to 52 meters of fencing material available to build a fence. He wants his fence to be 4 meters longer than it is wide. Write and solve an inequality to represent the possible side lengths.

Possible solution strategy
Draw a picture! Many students forget that a rectangle has 4 sides()
Let width $=x$ and Length $=x+4$.

335. A golf club charges a yearly fee of $\$ 2000$ plus $\$ 100$ for each round of golf. Ty Ger cannot afford anymore than $\$ 4500$ per year for golf. Express the number of rounds of golf he can play this year as an inequality.

Possible solution strategy
Let $x=$ number of rounds $T y$ can play.

Write an inequality.
$100 x+2000 \leq 4500$
$100 x \leq 2500$
$x \leq 25$
Ty can play no more than 25 rounds of golf this year.
334. A rectangle has a length of $x+4 \mathrm{~cm}$ and a width of $x-1 \mathrm{~cm}$. Determine the possible values of x if the perimeter can be at most 48 cm long.
336. When a number is tripled and then decreased by 7 the result is less than 29. Determine all the solutions.

Challenge \#29:
337. By observation circle all the numbers that are solutions to $2 x>4$.

$$
. . .,-4,-3,-2,-1,0,1,2,3,4, \ldots
$$

338. Now solve $2 x>4$.
339. Are the numbers you circled solutions to the simplified inequality?
340. By observation circle all the numbers that are solutions to $-3 x>6$.

$$
\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots
$$

341. Now solve $-3 x>6$.
342. Are the numbers you circled solutions to the simplified inequality?

When an inequality is multiplied or divided by a negative number, the inequality symbol changes direction. For example if $-2 x>8$, then $x<-4$.
343. Create a rule for multiplying or dividing by a negative number to determine the solution of an inequality:

Challenge \#30:

350. When an inequality is multiplied or divided by a negative number what do you have to remember to do?

Describe what was done to the first inequality to result in the second inequality.

	352. $-2 x<18$ $x>-9$	$\begin{aligned} \hline 353 . & 5 x-1 \leq 19 \\ x & \leq 4 \end{aligned}$

True or false? If it is false, correct it.

354. T or F.	355.T or F.	356. Tor F.	357. T or F.
If $x-5>12$ then	If $x+5>-4$ then	If $-2 x>-10$ then	If $-3 x>-30$ then
$x>17$.	$x<-9$.	$x>5$.	$10>x$.
358. T or F.			
If $2(x-5)>-14$ then	If $-3 x+6>-9$ then	If $-2(x+6)>16$ then	If $x-10>20$ then
$(x-5)<-7$.	$x-2<3$.	$-8>x+6$.	$30<x$.

Challenge \#31:

362. Solve $-6 m+3>2 m+19$ and graph your solution

Write down the steps to solve the challenge to the left. on a number line. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

©Solving Problems with Linear Inequalities

Solve each inequality.

Pay close attention! Bonnie thinks she has a really cool way of solving inequalities.	
368. Solve. $6 m-2<3 m-2$	369. Solve. $-3 m-8<1 m-4$
Convert $6 m-2<3 m-2$ to $6 m-2=3 m-2$.	Convert $-3 m-8<1 m-4$ to $-3 m-8=1 m-4$.
$6 m-2=3 m-2$	$-3 m-8=1 m-4$
$3 m-2=-2$	$-4 m-8=-4$
$3 m=0$	$-4 m=4$
$m=0$	$m=-1$
Convert back	Convert back
$m=0$ convert back $m<0$	$m=-1$ convert back $m<-1$

370. Does her strategy work? Why or why not?
371. Which has more solutions $2 x+7=9$ or $2 x+7>9$.

Explain your answer.
\qquad
\qquad
\qquad
\qquad

Solve each inequality and graph the solution on the number line.

Challenge \#32:

379. Many banks now allow you to invest up to $\$ 5000$ per year in high interest savings accounts without being taxed. Saevmor, has already invested \$2320 this year. He is trying to put as much money as possible in this account. Write and solve an inequality to represent how much he can still invest without being taxed.
380. Tok Alut, is trying to decide between two phone plans. His options include:

- Chatzilla economy plan: \$20/month and $\$ 0.80$ for every minute above 300 minutes.
- Chatzilla premium plan: $\$ 70 /$ month and $\$ 0.10$ for every minute above 300 minutes.

Write and solve an inequality to explain when it costs less to use the premium plan.

Define a variable, write an inequality and solve each problem.
381. Many banks now allow you to invest up to $\$ 5000$ per year in high interest savings accounts without being taxed. Saevmor, has already invested \$2320 this year. He is trying to put as much money as possible in this account. Write and solve an inequality to represent how much he can still invest without being taxed.

Possible solution strategy:
Let $x=$ the amount of money he can still invest $x+2320 \leq 5000$
$x \leq 2680$
Saermore can invest at most an additional \$2680.
382. Suzy's Shoe Store pays their employees an hourly rate plus a bonus for sales over $\$ 2500$ per week. Niakee sold $\$ 1882.75$ in the first three days of the week. Write and solve an inequality to represent what sale amounts will lead to a bonus for this week.
383. Tok Alut, is trying to decide between to phone planes. His options include:

- Chatzilla economy plan: \$20/month and $\$ 0.80$ for every minute above 300 minutes.
- Chatzilla premium plan: \$70/ month and $\$ 0.10$ for every minute above 300 minutes.

Write an inequality to explain when it costs less to use the premium plan.

[^0]384. Gabmore Wireless charges $\$ 40 /$ month plus $\$ 0.50$ for all minutes above 500 minutes per month. Budd Jet has decided that he does not want to pay more than $\$ 60$ per month. Write and solve an inequality to represent how many minutes he can use per month without going over he $\$ 60$ limit

Define a variable, write an inequality and solve each problem.
385. When the difference of a number and seven is tripled, the result is bigger than 45 . Write an inequality to represent all the numbers that are answers to this question.
386. Wondorf has 64 meters of fencing material available to build a rectangular fence. He wants his fence to be 8 meters longer than it is wide. Write and solve an inequality to represent the possible side lengths.
387. Vertical Wireless charges $\$ 50$ / month plus $\$ 0.25$ for all minutes above 400 minutes per month. Frue Gal has decided that she does not want to pay more than $\$ 70$ per month. Write and solve an inequality to represent how many minutes she can use per month without going over her $\$ 70$ limit. Approximate your solution on the number line.
388. Bes Deel, is trying to decide between two phone plans. Her options include:

- Vertical budget plan: $\$ 30 /$ month and $\$ 0.75$ for every minute above 400 minutes.
- Vertical premium plan: $\$ 60 /$ month and $\$ 0.20$ for every minute above 400 minutes.

Write and solve an inequality to explain when it costs less to use the premium plan. Approximate your solution on the number line.

Solve each inequality to one decimal.

389. Solve. $5.2 m-8.4<1.3 m-1.6$	390. Solve. $2(m-1.4)<-7.3 m+8.5$	391. Solve. $-1.8 m-2.4<10(m-2.6)$

Review Check List

Definitions:	Pg \#	Face it $:())^{\star}$	
Go to page 3 and write down any definitions that you are unsure of.	Define each word and be able to show your understanding with examples.	3	

		Pg \#	Face it
\#			

*Face it. When you have mastered the content draw $a \times O$ if you are unsure, draw $a *$ and ask for help.
\qquad 33

Practice Test

- Write this test and do not look at the answers until you have completed the entire test.
- Mark the test and decide whether or not you are happy with the result. FACE IT!
- Successful students will go back in the guidebook and review any questions they got wrong on this test.

Write an equation to represent each set of algebra stones.

Write an equation and solve it by rearranging the algebra tiles.

Modify the algebra tiles to show how many one tiles would be needed to balance one x tile?

Modify the algebra tiles to show how many one tiles would be needed to balance one \times tile?
6.

Modify the algebra tiles to show how many one tiles would be needed to balance one x tile?

Solve for the unknown.

7. $5 m-15=40$	8. $-\frac{2 m}{3}-5=25$	9. $-2(m-5)=25$
10. Which of the following number(s) is a solution to $m+5=2 m+6 ;-1,1,5$	11. Do not solve $\frac{m}{3}+\frac{2 m}{5}=2$. Explain what you could do to eliminate the fractions.	12. Solve. $-3 m-10=-7 m-14$

Solve for m.

13. $2(m+1)+4 m=4(m-2)+6$.	14. Solve. $m-\frac{m}{3}=\frac{1}{4} m+4$	15. Solve. $\frac{m+2}{3}=\frac{2 m-1}{5}$

Spot the error.
25. Spot the error and solve.
$-\frac{m}{3}-5=25$
$-m-5=75$
$-m=80$
$m=-80$
26. Spot the error and solve. $-7(x+2) \geq 5(x-1)$
$-7 x-14 \geq 5 x-5$
$-12 x-14 \geq-5$
$-12 x \geq 9$
$x \geq 9 / 12 \rightarrow x \geq 0.75$
27. Tor F.

If $-2(x+6)>16$ then
$-8>x+6$.
28. Tor F.

If $-3 x>-30$ then $10>x$.
31. A square sheet of paper is folded in half to form a rectangle. The perimeter of the rectangle is 60 cm . Determine the dimension of the square if the length of the rectangle is twice as long as the width?
32. Sargent has up to 50 meters of fencing material available to build a fence. He wants his fence to be 4 meters longer than it is wide. Define a variable, write and solve an inequality to represent the possible side lengths.
33. Tok Lesh, is trying to decide between to phone plans. His options include:

- Chatzilla economy plan: \$30/month and $\$ 0.70$ for every minute above 400 minutes.
- Chatzilla premium plan: \$80/month and $\$ 0.05$ for every minute above 400 minutes.

Write and solve an inequality to explain when it is cheaper to choose the premium plan.

Solving Equations Answer Key

1.	6			
2.	5		-10	103. no
3.	24	60.	-10	104. yes
4.	3		3	105. yes
5.	$9 \mathrm{x}+4$		-15	106. no
6.	$12 \mathrm{x}-6$	62.	-1	107. no
7.	$-8 \mathrm{x}+4$	63.	-2	108. $m=-7$
8.	-7x-2	64.	-2	109. $m=-12$
9.	$\mathrm{x}+3=14$	65.	3	40
10.	$x+3=10$	66.	-10	110. $\mathrm{m}=\frac{40}{3}$
11.	$3 \mathrm{x}=15$	67.	4	3
12.	$x=11$ $x=7$	68.	20	111. $m=-5$
13.	$\mathrm{x}=7$	69.	$m=20$	
14.	$\mathrm{x}=5$	70.	$\mathrm{m}=20$	
15.	$x+4=12$	71.	$\mathrm{m}=10$	112. 2
16.	$x+6=9$	72.	$m=-10$	113. 3
17.	$4 x=-12$	73.	$m=-45$	114. -1
18.	$x=8$	74.	$\mathrm{m}=20$	115. 3
19.	$x=3$	75.	$\mathrm{m}=-81$	116. 2
20.	$x=-3$	76.	$\mathrm{m}=-22$	117. 3
21.	yes			118. $\mathrm{m}=3$
22.	yes		$m=-27$	119. $\mathrm{m}=3$
23.	yes		$m=\frac{4}{4}$	120. $m=-4$
25.	${ }_{\text {m }}=11$	78.	$\mathrm{m}=10$	121. $m=-6$
26.	$\mathrm{m}=1$		51	122. $\mathrm{m}=5$
27.	$\mathrm{m}=10$	79.	$\mathrm{m}=\frac{51}{5}$	8
28.	$\mathrm{m}=3$		5	123. $m=\frac{-}{3}$
29.	subtracting			3
30.	adding	80.	10	124. $m=-2$
31.	dividing		3	125. $-\frac{35}{9}$
32.	multipling zero $(+5-5=0)$, one $(2 \times 1 / 2=1)$			125. $-\frac{}{9}$
34.	5	81.	Incorrect: m=-12	126. $\mathrm{m}=-1$
35.	17	82.	Incorrect: m=-90	
36.	5	83.	Correct: -12	127. $\mathrm{m}=\frac{15}{4}$
37.	30	84.	$\mathrm{m}=-17$	127. 4
38.	$\mathrm{x}+6=14,8$	85.	$\mathrm{m}=-10$	128. $m=-10$
39.	$\mathrm{x}-6=5,11$		$\mathrm{m}=10$	
40.	$5 \mathrm{x}=15,3$	87.	15 by 19	129. $\mathrm{m}=\frac{-35}{}$
41.	-3	88.		129. m= 2
42.	+6		38.888 - 38 8	
43.	divide by 3	89.	38.888° or $38 \square^{\circ}$	
44.	multiply by 4		9	
45.	divide by -5	90.	7	130. 11 cm by 11 cm 131. 11 cm by 11 cm
46.	-7		$\mathrm{m}=7$	131. 11 cm by 11 cm 132. 14 km
47.	mulitply by -3		40	133. \$625
49.	-2, 24/23	92.	$m=\frac{10}{3}$	134. 4
50.	$3 x+6=12,2$		3	135. 2
51.	$2 \mathrm{x}-4=10,7$	93.	$m=-3$	136. 2
52.	-6x+7=13, -1	94.	$\mathrm{m}=4$	137. -2
53.	$3 \mathrm{x}+4=13,3$		-15	138. -6
54.	$2 x-9=3,6$	95.	$\mathrm{m}=\frac{1}{2}$	139. -3
55.	$-4 x+1=-11,3$		2	141. $\mathrm{m}=-2$
56.	7, Plug m=7 into $4 \mathrm{~m}+3=31$ and	96.	1	141. $\mathrm{m}=-2$
	confirm that it is true.	97.	-1	13
57.	7	98.	4	142. m=
58.	10		1 is the only solution	18
59.	11	100	Yes	143. $\mathrm{m}=1$
		101		
			yes	

103. no
104. yes
105. yes
106. no
107. $m=-7$
108. $\mathrm{m}=-12$
109. $\mathrm{m}=\frac{40}{3}$
110. $m=-5$
111. 2
112. 3
113. -1
114. 3
115. 2
116. 3
117. $\mathrm{m}=3$
118. $\mathrm{m}=3$
119. $\mathrm{m}=-4$
120. $\mathrm{m}=-6$
121. $\mathrm{m}=5$
122. $\mathrm{m}=\frac{8}{3}$
123. $\mathrm{m}=-2$
124. $-\frac{35}{9}$
125. $\mathrm{m}=-1$
126. $\mathrm{m}=\frac{15}{4}$
127. $m=-10$
128. $\mathrm{m}=\frac{-35}{2}$
129. 11 cm by 11 cm
130. 11 cm by 11 cm
131. 14 km
132.

136
137. -2
138. -6
140.
141. $m=-2$
142. $\mathrm{m}=\frac{13}{18}$
143. $\mathrm{m}=1$
144. $m=\frac{1}{2}$
145. $\mathrm{m}=0$
146. $\mathrm{m}=\frac{3}{5}$
147. $\mathrm{m}=\frac{3}{4}$
148. $m=6$
149. $m=\frac{-18}{7}$
150. $m=-4$
151. $\mathrm{m}=\frac{-1}{6}$
152. Multiply both sides by 3 .
153. Multiply both sides by 5 .
154. Multiply both sides by 15 .
155. $\mathrm{m}=\frac{75}{22}$
156. $\mathrm{m}=\frac{75}{22}$
157. $\mathrm{m}=\frac{15}{7}$
158. $\mathrm{m}=\frac{15}{7}$
159. $\mathrm{m}=\frac{12}{29}$
160. $\mathrm{m}=\frac{48}{5}$
161. $\mathrm{m}=13$
162. $m=13$
163. $\mathrm{m}=\frac{-8}{9}$
164. $\mathrm{m}=3$
165. $\mathrm{m}=\frac{11}{16}$
166. $\mathrm{m}=\frac{-7}{12}$
167. $\mathrm{m}=\frac{8}{19}$
168. $\mathrm{m}=\frac{10}{13}$
169. $\mathrm{m}=\frac{25}{11}$
170. $\mathrm{m}=\frac{13}{14}$
171. $\mathrm{m}=\frac{15}{14}$
172. $\mathrm{m}=\frac{7}{18}$
173. $\mathrm{m}=2.5$ or $5 / 2$
174. $\mathrm{m}=2.5$ or $5 / 2$
175. $\mathrm{m}=2.5$ or $5 / 2$
176. $\mathrm{m}=\frac{13}{2}$
177. $\mathrm{m}=7$
178. $\mathrm{m}=2.5$
179. $\mathrm{m}=\frac{13}{2}$
180. $\mathrm{m}=6$
181. $m=8$
182. $\mathrm{m}=\frac{11}{3}$
183. $\mathrm{m}=\frac{16}{5}$
184. $m=-13$
185. $m=\frac{-20}{3}$
186. $m=-7$

$$
a(m+n)=h
$$

187.

$a m+a n=h$
$a m=h-a n$
$m=\frac{h-a n}{a}$
$m=\frac{h-a n}{a}$
188. $m=\frac{h}{a}-\frac{a n}{a}$
$m=\frac{h}{a}-n$
189. $m=25$
190. $\mathrm{m}=35$
191. $\mathrm{m}=6$
192. $m=60$
193. $\mathrm{m}=30-\mathrm{n}$
194. $\mathrm{m}=30+\mathrm{n}$
195. $\mathrm{m}=\frac{30}{n}$
196. $m=30 n$
197. $m=x-n$
198. $\mathrm{m}=\mathrm{x}+\mathrm{n}$
199. $\mathrm{m}=\frac{x}{n}$
200. $m=x n$
201. $\mathrm{m}=\mathrm{x}-\mathrm{ng}$
202. $m=x+n g$
203. $\mathrm{m}=\frac{x}{n g}$
204. $m=n g x$
205. $m=15$
206. $\mathrm{m}=20$
207. $m=14$
208. $\mathrm{m}=40$
209. $\mathrm{m}=\frac{35-n}{2}$ or $17.5-\frac{n}{2}$
210. $\mathrm{m}=\frac{35+n}{2}$ or $17.5+\frac{n}{2}$
211. $\mathrm{m}=15-\mathrm{n}$
212. $m=60-2 n$
213. $\mathrm{m}=\frac{B-n}{A}$ or $\frac{B}{A}-\frac{n}{A}$
214. $\mathrm{m}=\frac{B+n}{A}$ or $\frac{B}{A}+\frac{n}{A}$
215. $\mathrm{m}=\frac{B}{A}-n$ or $\frac{B+A n}{A}$
216. $m=(B-n) A$ OR AB, An
217. $\frac{5}{9}(F-32)=C$ or
$\frac{5 F}{9}-\frac{160}{9}=C$
218. Same as 217
219. 2A/h
220. 9.2
221. $w=\frac{P-2 l}{2}$ or $\frac{P}{2}-l$
222. 17.5 cm
223. $\mathrm{M}=\frac{6}{5}$
224. $\mathrm{M}=\frac{5}{3}$
225. $\mathrm{M}=\frac{6}{5}$
226. $\mathrm{M}=\frac{5}{3}$
227. $\mathrm{M}=\frac{25}{2}$
228. $M=6$
229. $\mathrm{M}=\frac{9}{2}$
230. $\mathrm{M}=\frac{10}{3}$
231. $\mathrm{M}=\frac{20}{3}$
232. $\mathrm{M}=\frac{15}{2}$
233. $\mathrm{M}=\frac{C}{A B}$
234. $\mathrm{B}=\frac{C}{A M}$
235. $\mathrm{M}=\mathrm{CAB}$
236. $\mathrm{B}=\frac{M}{A C} \square$
237. $\mathrm{M}=\frac{A B}{C}$
238. $\mathrm{B}=\frac{C M}{A}$
239. M $=\frac{A C}{B} \square$
240. B= $\frac{A C}{M}$
241. $\mathrm{M}=\mathrm{B}-\mathrm{N}$
242. $\mathrm{M}=\frac{6 B-2 N}{5}$
243. $\mathrm{M}=\frac{4}{A}+N$
244. $\mathrm{M}=\frac{5}{2 N}-A$
245. $\mathrm{M}=\mathrm{N}-\mathrm{B}$
246. $M=\frac{6 B+2 N}{5}$
247. $\mathrm{m} \geq \$ 280$
248. A,D,H
249. D \& H
250. <
251. >
252. >
253. >
254. <
255. >
256. <
257. <
258. >
259. <
260. $\mathrm{m} \geq \$ 280$
261. $\mathrm{t}<15$
262. $\mathrm{A}>100$
263. $\mathrm{D}<12$
264. J ≥ 100
265. $\mathrm{S} \geq 148$
266. $\mathrm{H}=210$
267. R ≤ 120
268. $\mathrm{R} \leq 20$
269. A
270. B,C
271. A,D
272. C,D
273. X is greater than $1, x>1$
274. X is less than or equal to 2 $x \leq 2$
275. X does not equal $-1, x \neq-1$
276. X is greater than $1, x>1 \square$
277. X is less than or equal to 2 , $x \leq 2$
278. X does not equal $-1, x \neq-1$
279. X is less than $1, x<1$
280. X is greater than or equal to 3 , $x \geq 3$
281. X is greater than $-2, x>-2$
282. X is equal to $1, x=1$
283. X is equal to $-2, x=-2$
284. X is greater than or equal to 2 , $x \geq 2$

293. $X>7$
294. $X \geq 3.2$
295. $\mathrm{m} \leq 7$
296. $\mathrm{n}>0$
297. $\mathrm{y} \neq 2$
298. $x \geq 4$
299. $x<0$
300. $y=4$
301. $-4 \leq x<11$
302.

303. $x=\$$ amount that a commission is made. $\mathrm{X}>5000$
304.
305.

306.

307.
308. $-4 \leq x<11$
309. $-10<x<-2$
310. $-1 \leq x<3$
311. $\longleftrightarrow-\frac{\theta}{-7} \quad-1$
312. $\longleftarrow \underset{-5}{-5} \rightarrow$

318. $220 \leq B \leq 229$, for $B=$ mass in grams
319. $\mathrm{L} \leq 15$ for $\mathrm{L}=$ Distances that get lower rate.
320. $0<L \leq 5$ for $L=$ possible side lengths
321. $0<L \leq 4$ for $L=$ possible side lengths
322. $x \geq 2$
323. Subtract a from both sides
324. Add a to both sides
325. $X \geq 2$
326. $X<1$
327. $X>4$
328. $\mathrm{X}<10$
329. $x \neq-6$
330. $x<4$
331. $0<W \leq 11$ and $4<L \leq 15$,
332. He plays at most 25 rounds of golf. $x \leq 25$
333. $0<W \leq 11$ and $4<L \leq 15$,
334. $0<W \leq 9.5$ and $5<L \leq 14.5$,
335. He play at most 25 rounds of golf.
336. All numbers less than 12.
337. $3,4, \ldots$
338. $x>2$
339. Answers will vary
340. ...,-4,-3
341. $\mathrm{x}<-2$
342. Answers will vary
343. Change the direction of the inequality when the dividing or multiplying by a negative number.
344. Yes
345. Yes
346. Yes
347. Yes
348. No, $-40>-400$
349. No, -4>-40
350. Change the direction
351. Subtract 4.5
352. Divide by -2
353. Add 1 and then divide by5
354. T
355. $\mathrm{F}, \mathrm{x}>-9$
356. $\mathrm{F}, \mathrm{x}<5$
357. T
358. $\mathrm{F}, \mathrm{x}-5>-7$
359. T
360. T
361. T
362. , $m<-2$
363. $m<-2$
364. $m \geq 2$
365. $m \leq \frac{1}{2}$
366. $m>\frac{3}{8}$
367. $m \leq \frac{1}{3}$
368. $m<0$
369. $\mathrm{m}>-1$
370. Yes. Division by a positive number does not change the direction of the inequality.
371. No. Division by a negative number changes the direction of the inequality.
372. $2 x+7=9$ simplifies to $x=1$.
$2 x+7>9$ simplifies to $x>1 . X>1$ has infinitely more solutions than $\mathrm{x}=1$.
373. $x \leq-6$,
374. $x<2.5$,

380. $\mathrm{m}<71.43 \mathrm{~min}$, The economy is the better deal if you talk at most 71 minutes
381. $\mathrm{x} \leq 2680$
382. $x \geq 617.25$
383. The Econoplan is better if you talk at most 71 minutes.
384. He can use up to 40 additional minutes for a total of 540 minutes.
385. $X>22$
386. $0<W \leq 12$ and $8<L \leq 20$,
387. $\mathrm{m} \leq 80 \mathrm{~min}$, She can talk at most 80 additional minutes
388. $\mathrm{m}>54.55 \mathrm{~min}$, Premium is the best deal if she talks at least 55 minutes above 400 minutes.
389. $\mathrm{m}<1.7$
390. $\mathrm{m}<1.2$
391. $m>2$

Practice test.

1. $\mathrm{X}+4=10,6$
2. $X-5=10,15$
3. $2 x-4=-4 x+8,2$
4. $4 x+4=16,3$
5. $-2 x+2=-5 x+5,1$
6. $4 x-1=3 x-2,-1$
7. 11
8. -45
9. $-15 / 2$ or -7.5
10. -1 is the only solution.
11. Multiply both sides by 15 .
12. -1
13. -2
14. $48 / 5$
15. 13
16. $5 / 2$
17. $\frac{a-2 n}{2}$
18. $\frac{b c}{a d}$
19. B,C
20. $\mathrm{X} \leq 2, \mathrm{X}>1$
21. $-4 \leq \mathrm{X}<11$
22. $x<10$, i.e. $7,8,9$ AMV
23. $X>-11$
24. $\mathrm{X}>-50 / 7$
25. $\mathrm{M}=-90$
26. $\mathrm{X} \leq-0.75$
27. T
28. T
29. 10
30. 1200
31. 20 by 20
32. $0<\mathrm{W} \leq 10.5,4<\mathrm{L} \leq 14.5$
33. Premium is better after 77 minutes or more additional minutes.

[^0]: Possible solution strategy:
 Let $m=$ number of additional minutes.
 Economy plan $\rightarrow \$ 20+0.8 \mathrm{~m}$
 Premium plan $\rightarrow \$ 70+0.1 \mathrm{~m}$
 Economy costs less than premium when:
 $\$ 20+0.8 \mathrm{~m}>70+0.1 \mathrm{~m}$
 $\$ 20+0.7 m>\$ 70$
 $0.7 m>50$
 $m>71.4285$
 The premium plan is a better deal if Tok plans to use mone than 71 additional minutes on a total of 371 monthly minutes.

