Solving Linear Equations and Inequalities

This booklet belongs to:_____

LESSON #	DATE	QUESTIONS FROM NOTES	Questions that I find difficult
1.		Pg.	
2.		Pg.	
3.		Pg.	
4.		Pg.	
5.		Pg.	
6.		Pg.	
7.		Pg.	
8.		Pg.	
9.		Pg.	
10.		Pg.	
11.		REVIEW	
12.		TEST	

Your teacher has important instructions for you to write down.

Solving Linear Equations and Inequalities				
Objective	#	Daily Topic	Key Ideas	
P&R3 model and solve	1.	Introduction to Solving Linear Equations (pg. 4-7)	Algebra stones and Algebra Tiles.	
problems using linear equations of the form:		 Model the solution of a given linear equation using concrete or pictorial representations, and record the process. 	Solve $x + 5 = 10$, $x - 7 = 10$, $2x = 10$, $\frac{x}{3} = 10$	
ax = D		Solution equations of the form expressed a/c +b-c (no. 8, 10)	Calua Ami 2-31 & a	
$\frac{x}{a} = b^{a \neq 0^{*}}$	2.	 Solve a given linear equation symbolically. Solve a given problem using a linear equation and record the 	Solve. $4m+3-51 \approx \frac{2}{5}m-5=3$	
u L*	!	process.		
aX + D = C	3.	Solving equations of the form a(x+b)=c and ax+b=cx+d(pg. 11-14)	Solve. 4(m+3)=40 & 6m+3=2m+15	
$\frac{x}{a} + b = c'^{a} \neq 0^{*}$		 Determine, by substitution, whether a given rational number is a solution to a given linear equation. 	Is m=5 a solution to the equation $2(m+2) = 14$?	
$a(x+b)=c^*$	4.	 More practice with ax+b=cx+d (Pg. 15-18) Identify and correct an error in a given incorrect solution of a 	Solve. 2(m+1)+4m=4(m-2)+6.	
ax + b = cx + d		linear equation		
	5	Solve equation with fractions. (Pg. 19-23)		
(\cdot, \cdot)	5.	 Solve a given linear equation symbolically. 	Solve $\frac{m}{m} + \frac{2m}{m} - \frac{1}{m} = 2$	
a(bx + c) = d(ex + f) *where a, b, c, d, e, and f [C,			3 5 2	
CN, PS, V]	6.	 Solve Linear equations without numbers. (Pg. 24-28) Solve a given linear equation symbolically. 	Solve for m. $A(m+n) = B$	
P&R4 explain and illustrate	7.	Introduction to linear inequalities (Pg. 29-33)	Write an expression to represent the following	
strategies to solve single variable linear inequalities with rational coefficients within a problem-solving context.		 Translate a given problem into a single variable linear inequality using the symbols ≥, >, < , or ≤ . Determine if a given rational number is a possible solution of a given linear inequality. 	statement: Melanie needs at least \$280 for snow boarding.	
	8.	Inequalities that Include Addition and Subtraction (Pg. 34-37) Generalize and apply a rule for subtracting a positive or subtracting a month of determine the evolution of the atmost in a curling in the subtraction of the s	Solve $2x + 5 < 25$ and verify your solution.	
		 Generalize and apply a rule for multiplying or dividing by a 	True or False.	
		positive or negative number to determine the solution of a given	$T_{f} - 2x > -10$ then $x > 5$	
		 inequality. Solve a given linear inequality algebraically and explain the 		
		process orally or in written form.		
		 Verify the solution of a given linear inequality using substitution for multiple elements in the solution. 		
	9.	Solving Problems with Linear Inequalities (Pg. 38-41)	Vertical Wireless charges \$50/ month plus \$0.25 for	
		 Compare and explain the process for solving a given linear 	all minutes above 400 minutes per month. Frue Gal has	
		 Graph the solution of a given linear inequality on a number line. 	decided that she does not want to pay more than \$70	
		 Compare and explain the solution of a given linear equation to 	per month. Write an inequality to represent now many minuty minutes she can use per month without aging over her	
		 the solution of a given linear inequality. Solve a given problem involving a single variable linear. 	\$70 limit. Approximate your solution on the number	
		inequality and graph the solution.	line	
	10.	Chapter Review and Practice Test		
		 Many students will graduate high school saying they do not 		
		know how to study for math tests.		
	11.	Go over Practice Test		
	12	Unit Evaluation		

Solving Linear Equations and Inequalities

***Pages 22-28 are extentions.

	Nefinition	Evennle
	Definition	Example
Binomial	A polynomial consisting of two terms.	2b³ +5 Is a binomial
Coefficient	A number in front of a variable.	2 <i>b</i> ³ + 5
		The 2 is the coefficient.
Constant	A number that does not change.	2 <i>b</i> ³ + 5
		The 5 is the constant.
Equation	A statement where two expressions are	$2b^3 + 5 = 2b + 1$ is an equation.
	equal.	$A = \pi r^2$ Is an equation.
Evaluate	Determine the answer.	Evaluate 2+3→5
Expand	A direction to multiply the number in front	$2m(3m-5n) = 6m^2 - 10mn$
	of the brackets by each of the terms inside	
	the brackets.	
Expression	A collection of variables and or numbers that	$2b^3 + 5$ Is an expression.
	represents a quantity.	πr^2 Is also an expression.
Inequality	A statement where two expressions are not	$6 > 1$, $2x + 3 < 5$ and $x \neq 4$ are
	equal.	examples of inequalities.
Inverse operation	Inverse operations have opposite effects.	Adding and subtracting are
		inverse operations.
Like Term	Terms that have the same variables to the	5m,3m and m are like terms.
	same exponents.	2n & 5m are not like terms.
Monomial	An algebraic expression consisting of one	$2b^3$ is a monomial. 5 is a
	term.	monomial.
Simplify	A direction to combine or reduce terms.	4m + 5m - 3m can be simplified
		to 6m.
Solve	A direction to determine the value of a	The solution to $x + 8 = 18$ is
	variable.	x=10.
Substitute	A direction to replace the variable(s) with	If 3 were substituted for x in
	specific values.	2x+1, the value of the
		expression would be 7.
Term	A quantity. A constant, a variable or the	$2b^3 + 5$
	product of a constant and a variable could	$2b^3$ is a term. 5 is a term.
Trinomial	represent this quantity.	
	A polynomial consisting of three terms.	2b [°] + 2m + 5
Variable	A letter that is used to represent a number.	$2b^3 + 5$
		The b is the variable.

Key	Terms
-----	-------

Introduction to Solving Linear Equations

 Five less than ten times a number is equal to fifty-five. What is the number? 10m-5=55 	 Three times the sum of two and a number is equal to twenty-one. What is the number? 3(m+2)=21 	3. A number is divided by four, increased by two and the result is 8. What is the number? $\frac{m}{4}$ +2=8	 4. One more than four times a number is the same as two times a number increased by seven. What is the number? 4m+1=2m+7
Rate the riddle:	Rate the riddle:	Rate the riddle:	Rate the riddle:
Easy, Medium, Hard	Easy, Medium, Hard	Easy, Medium, Hard	Easy, Medium, Hard
What made certain ridd	les harder than others?		

Challenge #1: Solve each riddle using any strategy that works.

€Introduction to Algebra Stones and Algebra Tiles€

Let ◊= x, ♦=-x, o=1 and •=-1				
5. Expression:	6. Expression:	7. Expression:	8. Expression:	
$\diamond \diamond \diamond$	$\diamond \diamond \diamond \diamond$	*	•	
∞∞ ⊘	~~~ ···	♦♦ • 0	***	
oo		♦♦♦ 000	*** ••	

Challenge #2: Write an expression to represent each set of algebra stones.

One of the major contributions of mathematics to our world has been to provide tools to solve complex problems in an orderly, repeatable and understandable way. Do you think you can figure out

what x equals in $\frac{2}{3}x + 7 = 5(x+1) - 7$ quickly?

Could you explain to a friend how to solve it? Could you create a system to solve this problem?

Challenge #3: Write an equation to represent each set of algebra stones.

Write an equation to represent each set of algebra tiles and solve the equation.

Will the scales be balanced after each change? Modify each drawing to support your answer.

21. If 5 is added to	22. If 5 is subtracted	23. If both sides are	24. If both sides are
both sides, will the	from both sides,	multiplied by 2, will	divided by 2, will
scales be	will the scales be	the scales be	the scales be
balanced?	balanced?	balanced?	balanced?
$\begin{array}{cccc} 000 & 000 \\ \hline 000 & 000 \\ \hline 25. \ What happens to \\ m-5=6 \ \text{if both} \\ \text{sides of the equation} \\ \text{are increased by 5?} \end{array}$	$\begin{array}{ccc} 000 & 000 \\ \hline 000 & 000 \\ \hline \end{array}$ 26. What happens to m+5 = 6 if both sides of the equation are decreased by 5?	$\begin{array}{ccc} 000 & 000 \\ 000 & 000 \\ \hline 27. What happens to \\ \frac{m}{2} = 5 \text{ if both sides} \\ of the equation are \\ multiplied by 22 \\ \end{array}$	$\begin{array}{ccc} 000 & 000 \\ \hline 000 & 000 \\ \hline 28. What happens to \\ 2m = 6 , if both \\ sides of the equation \\ are divided by 2? \end{array}$

Definition: Inverse Operations

- 29. The inverse of adding 5 is _____5.
- 30. The inverse of subtracting 7 is _____7.
- 31. The inverse of multiplying by 2 is _____ by 2.
- 32. The inverse of dividing by 2 is _____by 2.
- 33. Additive inverses, (+, -), add to and multiplicative inverses, (\times, \div) , multiply to, (-, -).

Perform the inverse operation to isolate x.

34. <i>x</i> + 5 = 10	35. <i>x</i> - 7 = 10	36. 2 <i>x</i> = 10	37. $\frac{x}{3} = 10$

Write an equation and use algebra stones to solve the equation.

What specific operation must be performed to isolate x?

41. <i>x</i> + 3 = 14	42. <i>x</i> – 6 = 10	43. 3 <i>x</i> = 15	44. $\frac{x}{4} = 20$
45. −5 <i>x</i> = 30	46. 7 + <i>x</i> = 16	47. $\frac{x}{-3} = -9$	48. −18 = −3 <i>x</i>

€Important note€

49. It is very possible to do the above problems without showing any work. These are warm up questions and practicing these skills now, will make solving questions like 2(m+1)+4m=4(m-2)+6 & $2(m-1)+\frac{5m}{2}=\frac{2}{3}(m+3)$, possible. By the way the answers are m=-2 and m=24/23. It took me about 1 minute and ten seconds to solve both: Can you beat my time?

Challenge #5: Write an equation to represent each set of algebra tiles and solve the equation.

Challenge #6:

56. Solve. 4m+3=31	Write down the steps to solve the challenge to the left.
How could you check to make sure your solution is right?	

Solve for m.

57. Solve. 4m+3=31	58. 3 <i>m</i> – 5 = 25	59. $5m - 15 = 40$
Subtract 3 from both sides. 4m+3 -3 =31 -3 4m=28 Divide both sides by 4. <u>4m</u> <u>28</u>		
4 4 m=7 Check your answer by substituting m=7 into the original equation. 4(7)+3=28 m=7 is the solution.	60. 6 <i>m</i> – 5 = –25	61. −2 <i>m</i> − 5 = 25

How many o are needed to balance one \Diamond ?

Modify the algebra tiles to show how many one tiles would be needed to balance one x tile?

Solve equations involving fractions.

69. Solve.
$$\frac{2}{5}m-5=3$$
 70. Solve. $\frac{3}{2}m-5=25$
 71. Solve. $\frac{5m}{2}-15=10$

 Eliminate the fractions by multiplying both sides by free.

 $\left(\frac{2}{5}m-5=3\right)5$
 Multiply every term by free.

 $\frac{10}{5}m-25=15$
 72. Solve. $\frac{6m}{5}-5=-17$
 73. Solve. $-\frac{2m}{3}-5=25$

 Reduce, add 25 to both sides and divide both sides by true.

 $\frac{2m}{2}=\frac{40}{2}$
 74. Solve. $-10=\frac{-3m}{4}+5$
 75. Solve. $\frac{m}{3}-2=-29$

 Check your answer by substituting m=20 into the original equation.

 $\frac{2}{5}(20)-5>3$
 8-5=3
 74. Solve. $-10=\frac{-3m}{4}+5$
 75. Solve. $\frac{m}{3}-2=-29$

 76. Solve. $-2m-5=39$

 76. Solve. $-2m-5=39$
 77. Solve. $-\frac{4m}{3}-4=5$
 78. Solve. $-25=-4m+15$
 79. Solve. $\frac{5m}{3}-7=10$

 80. $\frac{3m}{5}-5=-3$

 80. $\frac{3m}{5}-5=-3$

 81. Spot the error and solve. $-\frac{3}{3}-5=25$
 $-\frac{m}{-3}-5=25$
 $-\frac{m}{-30=3m}$
 $-\frac{m}{-30=3m}$
 $-\frac{m}{-30=3m}$
 $-\frac{m}{-30=3m}$
 $-\frac{m}{-30=3m}$
 $-\frac{m}{-30=3m}$
 $-\frac{m}{-30=3m}$
 $-\frac{m}{-30=3m}$

Write an equation and solve the equation.

84. A number is multiplied by negative two and then decreased by five and the result is twenty-nine. Find the number.	85. The sum of three times a number and three is negative twenty-seven. Find the number.	86. Three times the opposite of a positive number increased by five is negative twenty-five. Find the number.
Write an equation and solve the e	equation. 88. Guud Riter received \$400	89. The formula to convert
of fencing to build a fence. He wants the length to be 4 meters longer than the width. Write an algebraic equation and determine the dimensions of the rectangular fence. x+4 x + 4	dollars in advance plus \$2 for every Internet download of his EBook. How many downloads are needed for Guud to make \$4200?	degrees Celsius to degrees Fahrenheit is $F = \frac{9}{5}C + 32$. Use this formula to convert 102 Fahrenheit to degrees Celsius.

Challenge #8: 90. Solve. 4(m+3)=40

Write down the steps to solve the challenge to the left.

Solving Linear Equations that include Brackets

Challenge #9: Draw a picture to represent the equation and solve.

Challenge #10:

99. Which of the following number(s) is a solution to m + 5 = 2m + 4; -1,1,5

Explain how to answer the question.

Solutions to Equations

Definition:

A number is a **solution** to an equation if it can be substituted into the equation and make the left side of the equation equal to the right side of the equation.

Rewrite the above definition using your own words or an example.

100. Is m=1 a solution to $m + 5 = 2m + 4$?	101. Is m=5 a solution to $m + 5 = 2m + 4$?
Let's check. When $m=1$ is substituted into the equation, the left side is equal to the right side. (1) + 5 = 6 and 2(1) + 4 = 6	Let's check. When $m=5$ is substituted into the equation, the left side does not equal the right side. (5) + 5 = 10 and 2(5) + 4 = 14
Since $6 = 6$, $m=1$ is a solution.	Since $10 \neq 14$, m=5 is not a solution.

State whether each number is a solution to each equation.

102. Is m=12 a solution to the equation $m + 2 = 14$?	103. Is m=8 a solution to the equation $m - 2 = 10$?	104. Is m=5 a solution to the equation 4 <i>m</i> + 2 = 22?
105. Is m=5 a solution to the equation 2(m+2) = 14?	106. Is m=-2 a solution to the equation m+2=2m-8?	107. Is m=1 a solution to the equation 4m+2=2m-8?

Solve each equation and check your answer.

Challenge #12: Write an equation and solve it by rearranging the algebra tiles.

Challenge #13: 118. Solve. 6m+3=2m+15

Write down the steps to solve the challenge to the left.

Check your answer

119. Solve. 6m+3=2m+15	120. Solve. 5m+1=3m-7	121. Solve. 13m+5=11m-7
Subtract 2m from both sides. 6m-2m+3=2m-2m+15 4m+3=15 Subtract three from both sides. 4m+3-3=15-3		
4m=12 Divide both sides by 4. $\frac{4m}{4} = \frac{12}{4}$ m=3 Check your answer by substituting m=3 into the original equation. 6(3)+3=21 $21=2(3)+15m=3 is the solution.$	122. Solve. 2m+10=7m-15	123. Solve3m+18=6m-6
124. 2m+3=-7m-15	125. Solve. 2m+20=-7m-15	126. Solve3m-10=-7m-14
127. Spot the error and solve. 3m+3=7m-12	128. Spot the error and solve. $-24 = 3(m+2)$	129. Spot the error and solve. -5m+20=-7m-15
-4m+3=-12 -4m=-15 m=4/15	-24m=3m+2 -27m=2 m=-2/27	+20=-2m-15 5=-2m -5/2=m

Solve equations that have variables on both sides.

Challenge #14:

130. A square sheet of paper is folded in half to form a rectangle. The perimeter of the rectangle is 33 cm. Determine the dimension of the square if the length of the rectangle is twice as long as the width?

Solve using algebraic equations.

 131. A square sheet of paper is folded in half to form a rectangle. The perimeter of the rectangle is 33 cm. Determine the dimensions of the square if the length of the rectangle is twice as long as the width? 	132. Jon cycles 3 times further than he runs. Yesterday he biked and ran a total of 56 kilometers. How far did he run?	133. Daniel is going to spend at least \$200 at his favourite clothing store. He knows the owner will give him a 20% discount on anything he spends. How much can he spend before the discount, if the total bill
Possible solution strategy: Let the width-x and the =2x Penimeter=33 2x· $2x$ · x · x · x length x \int_{2x}^{2x} \int_{2x}^{2x} tength x \int_{2x}^{2x} \int_{2x		pass \$500?

Solve for \Diamond using algebra stones.

A Strategy to Consider

Now that the equations are getting more complex, it may helpful to review these steps.

- Eliminate <u>Fractions</u> by multiplying both sides by the common denominator.
- Eliminate brackets by <u>Expanding</u>.
- Collect Like Terms on each side of the equal sign.
- Get variables to same side by <u>Subtracting or Adding</u> variables to each side.
- Get constants to same side by <u>Subtracting or Adding</u> constants to each side.
- Isolate the variable by <u>Dividing</u> both sides by the coefficient.

The acronym is FELTSAD*. Some people have felt sad[®] until they figure out how to solve the equation. *(Apply from left to right. The F and E can be applied in any order. The S and A can be applied in any order). Here is an example of this.

	$2\left(m-1\right)+\frac{5m}{2}=\frac{2}{3}\left(m+3\right)$	This is a very difficult question. You will be able to do this at the end of this unit.
F	$\left[2\left(m-1\right)+\frac{5m}{2}=\frac{2}{3}\left(m+3\right)\right]\times 6$	F. Fractions. Multiply each side by 6.
E	$12(m-1) + \frac{30m}{2} = \frac{12}{3}(m+3)$ $12(m-1) + 15m = 4(m+3)$	E. Expand. Eliminate the brackets.
LT	12m - 12 + 15m = 4m + 12	LT. Like Terms. Collect like terms on the left side.
S	27m - 12 = 4m + 12	S. Subtract. Subtract 4m from both sides.
A	23 <i>m</i> – 12 = 12	A. Add. Add 12 to both sides.
D	23 <i>m</i> = 24	D. Divide. Divide both sides by 23.
	$m=\frac{24}{23}$	Check your answer. This answer would be best checked with a calculator.

Challenge #15:

140. Solve. 2(m+1)+4m=4(m-2)+6.

Write down the steps to solve the challenge to the left.

141. Solve. 2(m+1)+4m=4(m-2)+6. F.E.LT.S.A.D. Expand both sides. 2m+2+4m=4m-8+6. Collect like terms on both sides. 6m+2=4m-2 Subtract 4m from both sides. 6m-4m+2=4m-4m-2 2m+2=-2	142. Solve. 4(m-1)-6m=-10(2m-1)-1
Subtract two from both sides and divide both sides by two. $2m+2-2=-2-2$ $2m=-4$ $\frac{2m}{2} = \frac{-4}{2}$ $m=-2$ Check your answer. M=-2	143. Solve. 3(m-1)+6m=5(2m-1)+1
144. Solve. 3(m-1)+m=5(m-1)+3m	145. Spot the error: 4(m-1)+2=3(2m-1)+1 4(m-1)+2=3(2m-1)+1 4m-4+2=6m-1+1 4m-2=6m+0 -2=2m -1=m m=-1

Solve.

56116:		
146. 2(m-1)+m=5(m-1)+3m	1472(m-1)+2=3(2m-1)+1	148. $5 + 5m - 15 = 30 - 10$
i		i

00110 101 111	Sol	ve	for	m.
---------------	-----	----	-----	----

149. Solve.	150. Solve.	151. Spot the error and solve.
4m-2+3m=-24+4	10-5m-20=20-10	4(m-1)+2=2(5m-1)+1
		4m-4+2=10m-2+1 4m-2=10m+1 -6m-2=1 -6m=3 m=-3/6 m=-1/2

Challenge #16: Eliminating Fractions

152. Do not solve $\frac{m}{3} = 5$. In words	153. Do not solve $\frac{2m}{5} = 4$. In words	154. Do not solve $\frac{m}{3} + \frac{2m}{5} = 2$. In
explain what you could do to	explain what you could do to	words explain what you could do to
eliminate the fraction.	eliminate the fraction.	eliminate the fractions.

Challenge #17:

155. Solve $\frac{m}{3} + \frac{2m}{5} - \frac{1}{2} = 2$.

Write down the steps to solve the challenge to the left.

156. Solve $\frac{m}{3} + \frac{2m}{5} - \frac{1}{2} = 2$. F.E.LT.S.A.D. Multiply both sides by 30. $\left(\frac{m}{3} + \frac{2m}{5} - \frac{1}{2} = 2\right) \times 30$ Multiply every term by 30. $\frac{30m}{3} + \frac{60m}{5} - \frac{30}{2} = 60$	157. $\frac{m}{2} + \frac{2m}{3} - \frac{1}{2} = 2$	$158. \ \frac{5m}{2} + \frac{m}{3} = \frac{1}{2}m + 5$
Reduce. 10m + 12m - 15 = 60 Collect like terms on the left side. 22m - 15 = 60 Add 15 to both sides. 22m = 75 Divide both sides by 22 $m = \frac{75}{22}$	159. $\frac{m}{3} + 5m = \frac{1}{2}m + 2$	160. $m - \frac{m}{3} = \frac{1}{4}m + 4$

Solving equations that require eliminating more than one fraction.

Challenge #18:

161. Solve $\frac{m+2}{3} = \frac{2m-1}{5}$.

Write down the steps to solve the challenge to the left.

Solve for m.

162. Solve $\frac{m+2}{3} = \frac{2m-1}{5}$ *. F.E.LT.S.A.D. Multiply both sides by 15. $\left(\frac{m+2}{3} = \frac{2m-1}{5}\right) \times 15$ Multiply every term by 15. $\frac{15(m+2)}{3} = \frac{15(2m-1)}{5}$ Reduce and expand. F(m+2) = 3(2m-1)*	163. Solve. $\frac{5m+2}{2} = \frac{3m-1}{3}$	164. Solve. $\frac{m+5}{4} = \frac{2m+4}{5}$
$5(m+2) = 3(2m-1)^{*}$ 5m + 10 = 6m - 3 Subtract 5m from both sides. 10 = m - 3 m = 13 *This step could be achieved by cross- multiplying at the beginning.	165. Solve. $\frac{2m-2}{5} = \frac{-2m+1}{3}$	166. Solve. $\frac{3m+2}{3} = \frac{m+1}{5}$
167. Spot the error and solve. $\frac{m}{4} + 5m = \frac{1}{2}m + 2$ $\frac{4m}{4} + 5m = \frac{4}{2}m + 8$ $m + 5m = 2m + 8$ $6m = 2m + 8$ $4m = 8$ $m = 2$	168. Spot the error and solve. $\frac{3m-2}{4} = \frac{-m+1}{3}$ $\frac{36m-24}{4} = \frac{-12m+12}{3}$ $12m-6 = -4m+3$ $16m = 9$ $m = 9 / 16$	169. Solve. $\frac{5m}{2} + \frac{m}{5} = \frac{1}{2}m + 5$

Solve for m.				
170. Solve. $\frac{m-2}{5} = \frac{-2m+1}{4}$	171. Solve. $\frac{m}{2} + \frac{2m}{3} - \frac{1}{4} = 1$	172. Solve. $\frac{m+1}{5} = \frac{-3m+2}{3}$		

What should you do first? Expand or eliminate fractions? Does it matter?

Challenge #19:

173. Solve $\frac{2}{3}(m+5)+1=6$. Write down the steps to solve the challenge to the left.

Challenge #20: Use a different strategy than above.

174. Solve $\frac{2}{3}(m+5)+1=6$.

Write down the steps to solve the challenge to the left.

Solve.

2	176. Expand and then solve.	177. Expand and then solve.
175. Solve $\frac{1}{2}(m+5) + 1 = 6$	2,	2
3	-(m+4)-1=6	-(m+2)+3=9
F.E.LT.S.A.D.	5	5
Expand the left side.		1
$\frac{2}{3}m + \frac{10}{3} + 1 = 6$		
Multiply both sides by 3.		
$\left(\frac{2}{3}m+\frac{10}{3}+1=6\right)\times 3$		
$\frac{6}{3}m + \frac{30}{3} + 3 = 18$		
Reduce and collect like terms on the left side.		
2m + 10 + 3 = 18		
2m + 13 = 18		
Subtract 13 and divide by two.		
2 <i>m</i> = 5		
m=2.5		

Eliminate fractions first!

2	179. Eliminate fractions and then solve.	180. Eliminate fractions and then solve.
178. Solve $\frac{1}{3}(m+5)+1=6$	$\frac{4}{-}(m+4)-1=6$	$\frac{1}{m}(m-2)+4=6$
F.E.LT.S.A.D.	6	2
Eliminate fractions by multiplying both		
sides by three.		1 1 1
$\left(\frac{2}{3}(m+5)+1=6\right)\times 3$		
Multiply each term by three.		
$\frac{6}{3}(m+5)+3=18$		
Reduce, expand and collect like terms.		
2(m+5)+3=18		
2m + 10 + 3 = 18		
2m + 13 = 18		
Subtract 13 and divide by two.		
2 <i>m</i> = 5		
		I

m=2.5 *Which way do you like better? Expanding first or getting rid of fractions first? Solve.

181. Spot the error and solve 182. $\frac{3}{4}(m-1) + 4 = 6$ 183. $\frac{5}{2}(m-2)+2=5$ $\frac{1}{3}(m-2)+4=6$ $\left(\frac{1}{3}(m-2)+4=6\right)3$ $\frac{3}{3}(3m-6) + 12 = 18$ 31-6+12=18 3m+6=18 3M = 12 m = 4 $\frac{1}{3}(m-2)+4=6$ 186. Spot the error and solve. 184. Solve. 185. Solve. $\frac{1}{2}(m-1)+2=\frac{1}{5}(m-3)$ $\frac{1}{2}(m-1)+2=\frac{1}{3}(m-2)$ $\frac{1}{3}(3m-2)+2=\frac{1}{2}(m-4)$ $\frac{m}{2} - \frac{1}{2} + \frac{2}{2} = \frac{m}{5} - \frac{3}{5}$ $\left(\frac{m}{2} - \frac{1}{2} + \frac{2}{2} = \frac{m}{5} - \frac{3}{5}\right) 10$ $\frac{10m}{2} - \frac{10}{2} + \frac{20}{2} = \frac{10m}{5} - \frac{30}{5}$ 5m - 5 + 10 = 2m - 65m + 5 = 2m - 63m = -11 $m = -\frac{11}{3}$

Solving Linear Equations Without Numbers

Challenge #21:

187. Show that the solution to a(m+n) = h is $m = \frac{h-an}{a}$. 188. Is $m = \frac{h-an}{a}$ the same as $m = \frac{h}{a} - n$? How do you know?

Solve for m.			
189. <i>m</i> + 5 = 30	190. <i>m</i> − 5 = 30	191. 5 <i>m</i> = 30	192. $\frac{m}{2} = 30$
193. <i>m</i> + <i>n</i> = 30	194. <i>m − n =</i> 30	195. <i>nm</i> = 30	196. $\frac{m}{n} = 30$
197. <i>m</i> + <i>n</i> = <i>x</i>	198. <i>m</i> − <i>n</i> = <i>x</i>	199. nm = x	$200. \frac{m}{n} = x$
201. <i>m</i> + <i>ng</i> = <i>x</i>	202. m−ng = x	203. ngm = x	204. $\frac{m}{ng} = x$

205. 2 <i>m</i> + 5 = 35	206.2m - 5 = 35	207.2(m+1) = 30	<i>m</i> 40, 00
			208 + 10 = 30
209. $2m + n = 35$	210. $2m - n = 35$	211. $2(m+n) = 30$	212. $\frac{m}{2} + n = 30$
			2
213. $Am + n = B$	214. $Am - n = B$	215. $A(m+n) = B$	216. $\frac{m}{A} + n = B$
			~
Challenge #22:			
	9	Write down the steps to s	solve the challenge to the left.
217. The formula $F =$	$\frac{-C}{5} + 32$ converts degree	S	
Celsius to degree	es Fahrenheit. Solve for (
and write a form	ula that converts		
ranrenheit to Ce	EISIUS.		

Rearrange a fo	rmula to	solve ed	guations
----------------	----------	----------	----------

	0 0444110110	
218. The formula $F = \frac{9}{5}C + 32$ converts degrees Celsius to degrees Fahrenheit. Solve for c and write a formula that converts Fahrenheit to Celsius.	219. The formula for the area of a triangle is $A = \frac{bh}{2}$. Annie knows the value of the area and the height. Write a formula to find the base value. (Solve for b.)	221. The formula for the perimeter of a rectangle is P = 2(w + I), Sonil knows the perimeter and the length, write a formula to help him find the value of w. (Solve for w.)
Possible solutions strategy: Subtract 32 from both sides. $\mathcal{F} - 32 = \frac{q}{5}C$ Multiply both sides by 5 $\left(\mathcal{F} - 32 = \frac{q}{5}C\right)5$ $s\left(\mathcal{F} - 32\right) = qC$ Divide both sides by 9. $\frac{5}{q}\left(\mathcal{F} - 32\right) = C$ Other strategies could lead to: $\frac{5\mathcal{F}}{q} - \frac{160}{q} = C$	220. Determine the length of the base if the Area is 46cm ² and the height is 10cm long.	222. Determine the width if the perimeter is 59cm and the length is 12cm long.

Challenge #23:

223. Solve. $\frac{M}{2} = \frac{3}{5}$	224. Solve. $\frac{1}{M} = \frac{3}{5}$.
Write down the steps to solve the challenge to the left.	Write down the steps to solve the challenge to the left.
Write down the steps to solve the challenge to the left.	Write down the steps to solve the challenge to the left.
Write down the steps to solve the challenge to the left.	Write down the steps to solve the challenge to the left.

Solve for M.			
225. $\frac{M}{2} = \frac{3}{5}$	226. $\frac{1}{M} = \frac{3}{5}$	227. $\frac{5}{2} = \frac{M}{5}$	228. $\frac{1}{2} = \frac{3}{M}$
Solution:	Solution:		
Multiply by lowest common	Multiply by lowest common		
denominator.	denominator.		
$\left(\frac{M}{2}=\frac{3}{5}\right)\times10$	$\left(\frac{1}{M}=\frac{3}{5}\right)\times 5m \rightarrow$		
10 <i>M</i> 30	Divide both sides by 3.		
	5M 15M		
5M = 6			
Divide both sides by 5.	M 5 5-3M		
6	Divide both sides by 3.		
M = 5	5		
Ū	$M = \frac{3}{3}$		
229. $\frac{M}{3} = \frac{3}{2}$	230. $\frac{5}{M} = \frac{3}{2}$	231. $\frac{4}{3} = \frac{M}{5}$	232. $\frac{2}{3} = \frac{5}{M}$
	1 1 1	1 1 1	
	1 1 1 1		
	1 1 1	1 1 1	
	, , , ,	, , , ,	
	 	1 1 1	
denominator. $\left(\frac{M}{2} = \frac{3}{5}\right) \times 10$ $\frac{10M}{2} = \frac{30}{5}$ $5M = 6$ Divide both sides by 5. $M = \frac{6}{5}$ $229. \frac{M}{3} = \frac{3}{2}$	denominator. $\left(\frac{1}{M} = \frac{3}{5}\right) \times 5m \rightarrow$ Divide both sides by 3. $\frac{5M}{M} = \frac{15M}{5}$ 5 = 3M Divide both sides by 3. $M = \frac{5}{3}$ 230. $\frac{5}{M} = \frac{3}{2}$	231. $\frac{4}{3} = \frac{M}{5}$	232. $\frac{2}{3} = \frac{5}{M}$

Solve for the given variable.

233. Solve for M.	234. Solve for B.	235. Solve for M.	236. Solve for B.
ABM = C	ABM = C	$\frac{M}{AB} = C$	$\frac{M}{AB} = C$ Hint: Cross multiply M = ABC Divide both sides by AC. $B = \frac{M}{AC}$
237. Solve for M. $\frac{AB}{M} = C$	238. Solve for B. $\frac{AB}{M} = C$	239. Solve for M. $\frac{M}{A} = \frac{C}{B}$	240. Solve for B. $\frac{M}{A} = \frac{C}{B}$

27

Solve for m.

241. A(M+N)=AB	242. 5M+2N=6B	243.2A(M-N)=8
244.4N(A+M)=10	245. A(N-M)=AB	246.5 M-2N=6B
		1 1 1 1

Introduction to Linear Inequalities

Challenge #24:

247. Melanie is planning a snowboarding trip. She needs at least \$280 to go on the trip. Her know-it-all big brother writes a mathematical statement to express this situation.	248. What does this picture mean? -2 -1 0 1 2 3 4 Which of the following are true? A. 50 is a solution
Here is what he came up with:	B10 is a solution C. 1 is a solution
 Let m = money needed and m = \$\$280 	D. X is greater than 1. E. X is greater than or equal to one.
She really wants to correct him, but his answer seems right. Would you make any changes to the above statements?	F. $\times < 1$ G. $\times \le 1$ H. $\times > 1$ I. $\times \ge 1$
	249. Which letter or letters is(are) the best answer(s)?
seems right. Would you make any changes to the above statements?	 G. ×≤1 H. ×≥1 I. ×≥1 249. Which letter or letters is(are) the be answer(s)?

Inequality notes:

-0.5 one of the symbols > 0.5 to complete each meduality	Use one of the s	symbols	> or <	to comp	lete	each	inequality	1
--	------------------	---------	--------	---------	------	------	------------	---

000 0110			////2010		eemprere		-quality:			
250. 5	<	9	251. 20	-4	252. 5	-10	253. 11	-13	254. -3	-2
255. -4		-7	256. -3	10	257. -7	3	258. 24	12	259. 5	5.1

Define a variable and use one of t	the symbols;	=,≠,>,≥,<,&≤, to represent each
situation		

260. Melanie needs at least \$280 for snow boarding.	261. Dave makes less than \$15 in tips per night	262. Al makes more than \$100 a day
Let x=money needed* x≥280 *Any variable could be used as long as you define it		
263. Baby David weighs less than 12 pounds	264. Joni makes at least \$100 more per year than Jerry	265. Sall's minimum height is 148cm tall.
266.Hal makes \$210 per day	267.Ray doesn't make more than \$120 a day.	268.Rita's maximum vertical leap is 20 inches

Which of the statements is the given number a solution to?

269.3.5	270.4	271. 7	272. -2
A. x > 2	A. x > 4	A. x > 6.99	A. $x > -1$
B. $x \ge 4$	B. <i>x</i> ≥ 4	B. <i>x</i> ≥ 7.01	B. <i>x</i> ≥ 3
$C. \mathbf{X} \leq 3$	<i>C</i> . <i>x</i> ≠ 100	<i>C</i> . <i>X</i> ≠ 7	<i>C</i> . <i>x</i> ≠ 7
D. <i>x</i> < −2	D. <i>x</i> < 4	D. <i>x</i> ≤ 7	D. <i>x</i> ≤ −1
			1

Graph each of the following statements on the number line.

• A solid dot is used on the number line for the following $=, \leq, \geq$.

• A hollow dot is used on the number line for the following $>, <, \neq$.

Sketch a line graph to represent each inequality.

285. <i>x</i> > 3	286. <i>x ≠ −</i> 1	287. 1 > <i>x</i>	288. <i>x</i> ≥ 3	289. <i>x ≠</i> 2
3	-1	1	3	2

Sketch each inequality

290. <i>x</i> < -1	291. <i>x</i> ≤ −3	292. <i>x</i> ≤ −2

-			
293.X is greater than	294.3.2 is less than or	295.m is at most 7.	296.n is positive
7.	equal to x.		
	ı , м	ı • • • • • • • • • • • • • • • • • • •	
297.y does not equal 2.	298.X is at least 4.	299.X is negative.	300. Y is equal to 4.
	1 1	1 1	1 1

Use a symbol to write an inequality that corresponds to each statement

Challenge #26:

301. Write an inequality for all	302. Sketch $-7 < x \le -1$.	303. Sellotz earns a 9%
the numbers bigger than or equal to negative 4 and less than 11	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9	commission on all sales over \$5000. Write an inequality to represent all the dollar
		values that allows Sellotz to earn a commission.
		Define the variable:
		Inequality:
		1 1 1

Sketch a line graph to represent each inequality.

5			
304. <i>x</i> > −2.7	2	306. 7.8 > <i>x</i>	307. <i>x</i> ≥ −1.33
	$305. x \neq -5$		

Write a compound inequality.

tti i e a cempeana mequain	/·	
308. Write an inequality for all the numbers bigger than or	309. Write an inequality for all the numbers less than	310. Write an inequality for all the numbers that are at
equal to negative 4 and less	negative two and greater	least -1 and less than 3.
than 11.	than negative ten.	
Possible solution strategy • Bigger than or equal to -4→ x≥-4 • Less than 11→x<11 • Combine -4≤x<11		

For each inequality, graph the possible values of x on the number line.

Tor each meduanty, graph me po		110.
311. $-7 < x \le -1$	312. –5 < <i>x</i> < 3	313. $7 \ge x > 3$
Possible solution Strategy:		
• <i>Graph x>-7 and x≤-1</i>		
x >-70		
X ≤ -		
• The solution is the eventure		
• The solution is the overlap.	-9-8-7-6-5-4-3-2-10123456789	-9-8-7-6-5-4-3-2-10123456789
-7 -1	1 1 •	
314. Approximate -4 < x < 3.8	315. Approximate $-7.2 \le x \le 0$	316. Approximate $-1 \ge x > -8$ on
on the number line	on the number line	the number line
		me number me.
	_	_
-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
	1	
	;	

Define a variable and write an inequality to express each situation.

317. Sellotz earns a 9% commission on all sales over \$5000. Write an inequality to represent all the dollar values that allows Sellotz to earn a commission.	318. Bill cans pickled green beans. The mass must be between 220 grams and 229 grams inclusively or his supervisor will reject the can. Express the inequality algebraically.		319. Insurance companies charge more money for drivers who drive further. The rate is increased for those drivers who live more than 15km from their job. Express all the distances that will not lead to an insurance rate increase.
Possible solution Strategy:			
Define the variable: C= Commission Inequality: C>\$5000			
320. Grissinda is building a square hedge hog in her back yard. more than 20m of fencing av an inequality to represent all side lengths.	pen for her pet She has no ailable. Write the possible	321. William wan summer BBC 16m ² . Write the possible	ts to build a square patio for Qs. The patio can be at most an inequality to represent all side lengths.

Inequalities that Include Addition and Subtraction

Challenge #27:	
322. List three solutions to $x + 5 \ge 7$. Solve $x + 5 \ge 7$ on the number line.	Write $x + 5 \ge 7$ in a more efficient way.
	Check three solutions from the simplified inequality with the initial inequality to test your answer.

Generalize a rule for adding and subtracting rational numbers.

323. Given $x + a > 5$ or $x + a \ge 5$ explain what you	324. Given $x - a > 5$ or $x - a \ge 5$ explain what you
need to do to isolate x.	need to do to isolate x.

Solve for x and verify your solution by substituting 2 different numbers into the inequality.

325. <i>x</i> + 5 ≥ 7	326. <i>x</i> – 5 < –4	327. 2 <i>x</i> > 8
Possible solution strategy:		
• <i>X</i> +5≥7		
Subtract five from both sides.		
• $X+5-5 \ge 7-5 \rightarrow \underline{X \ge 2}$		
Test three numbers that are greater than or		
equal to 2. E.g. 2,3, &10		
$(2)+5=7 \ge 7 (3)+5=8 \ge 7, \& (10)+5=15 \ge 7$	¦	
328. 2 <i>x</i> + 5 < 25	329. 3 <i>x</i> – 2 ≠ –20	330. $2(x+5) < 18$
		i l
	1 1	:

Challenge #28:

- 331. Sargent has up to 52 meters of fencing material available to build a rectangular fence. He wants his fence to be 4 meters longer than it is wide. Write and solve an inequality to represent the possible side lengths.
- 332. A golf club charges a yearly fee of \$2000 plus \$100 for each round of golf. Ty Ger cannot afford anymore than \$4500 per year for golf. Express the number of rounds of golf he can play as an inequality.

333. Sargent has up to 52 meters of fencing		334. A rectangle has a length of x+4 cm and a
material available to build a fence. He wants		width of x-1 cm. Determine the possible
his fence to be 4 meters longer than it is wide. Write and solve an inequality to represent the possible side lengths.		values of x if the perimeter can be at most
		48 cm long.
Possible solution strateov:		
Draw a picture! Many students forget that a rectangle has 4 sides Let width = x and Length =x+4.	9	
X // A la	(+4	
while an inequality: 4x+8≤52	<5.2m	
<i>4x</i> ≤44 F≤	sozm v	
x≤// P=	=4x+8	
The width must be less than or equal to II and the length must be 4 or more and less than or equa	•	
to 15.	x+4	
335. A golf club charges a yearly fee of \$2000 plus \$100 for each round of golf. Ty Ger cannot afford anymore than \$4500 per year for golf. Express the number of rounds of golf he can play this year as an inequality.		336. When a number is tripled and then decreased by 7 the result is less than 29. Determine all the solutions.
for golf. Express the number of golf he can play this year as an i	rounds of nequality.	
for golf. Express the number of golf he can play this year as an in Possible solution strategy: Let x=number of nounds Ty can play.	[:] rounds of nequality.	
for golf. Express the number of golf he can play this year as an in Possible solution strategy: Let x=number of nounds Ty can play. White an inequality: 100x+2000≤4500 100x=2500	[:] rounds of nequality.	
for golf. Express the number of golf he can play this year as an in Possible solution strategy: Let x=number of rounds Ty can play. White an inequality: 100x+2000<4500 100x<2500 x<25	rounds of nequality.	
for golf. Express the number of golf he can play this year as an in Possible solution strategy: Let x=number of nounds Ty can play. White an inequality: 100x-2000s4500 100x2500 x<25 Ty can play no more than 25 rounds of golf this year.	rounds of nequality.	
for golf. Express the number of golf he can play this year as an in Possible solution strategy: Let x=number of rounds Ty can play. Write an inequality: 100x-2000\$\scale{100}\$ 100x\$\scale{200}\$ x\$\scale{25}\$ Ty can play no more than 25 rounds of golf this year.	rounds of nequality.	
for golf. Express the number of golf he can play this year as an in Possible solution strategy: Let x-number of nounds Ty can play. White an inequality: 100x+2000≤4500 100x≤2500 x≤25 Ty can play no more than 25 nounds of golf this year. Challenge #29:	rounds of nequality.	
for golf. Express the number of golf he can play this year as an in Possible solution strategy: Let x-number of nounds Ty can play. White an inequality: 100x-2000≤4500 100x≤2500 x≤25 Ty can play no more than 25 nounds of golf this year. Challenge #29: 337. By observation circle all the num	rounds of nequality. bers that	340. By observation circle all the numbers that
for golf. Express the number of golf he can play this year as an in Possible solution strategy: Let x-number of rounds Ty can play. Write an inequality: 100x+2000≤4500 100x≤2500 x≤25 Ty can play no more than 25 rounds of golf this year. Challenge #29: 337. By observation circle all the num are solutions to 2x > 4.	rounds of nequality.	340. By observation circle all the numbers that are solutions to $-3x > 6$.
for golf. Express the number of golf he can play this year as an in Possible solution strategy: Let x-number of nounds Ty can play. White an inequality: 100x-2000 \leq 4500 100x \leq 2500 $\times \leq 25$ Ty can play no more than 25 nounds of golf this year. Challenge #29: 337. By observation circle all the num are solutions to $2x > 4$. , -4 , -3 , -2 , -1 , 0 , 1 , 2 , 3 , 4 , .	rounds of nequality. bers that	340. By observation circle all the numbers that are solutions to $-3x > 6$. , $-4, -3, -2, -1, 0, 1, 2, 3, 4,$
for golf. Express the number of golf he can play this year as an in Possible solution strategy: Let x-number of rounds Ty can play. Write an inequality: 100x-2000<4500 100x2500 x225 Ty can play no more than 25 rounds of golf this year. Challenge #29: 337. By observation circle all the num are solutions to $2x > 4$. , -4 , -3 , -2 , -1 , 0 , 1 , 2 , 3 , 4 , . 338. Now solve $2x > 4$.	rounds of nequality. bers that	 340. By observation circle all the numbers that are solutions to -3x > 6. , -4, -3, -2, -1, 0, 1, 2, 3, 4, 341. Now solve -3x > 6.

Define a variable, write an inequality and solve the inequality.

When an inequality is multiplied or divided by a negative number, the inequality symbol changes direction. For example if -2x>8, then x<-4.

343. Create a rule for multiplying or dividing by a negative number to determine the solution of an inequality:

Challenge #30: 344. 345. 346. Δ 40 40 40 < 40 < 40 40 4 < Increase both sides by 100. Decrease both sides by 100. Multiply both sides by 5. Is the inequality still true? Is the inequality still true? Is the inequality still true? 347. 348. 349. 40 40 40 4 < 40 4 < 40 < 40 Divide both sides by 4. Multiply both sides by -10. Divide both sides by -1. Is the inequality still true? Is the inequality still true? Is the inequality still true?

350. When an inequality is multiplied or divided by a negative number what do you have to remember to do?

351. x + 4.5 > 7.8 x > 3.3	-2 <i>x</i> < 18 352.	$5x - 1 \le 19$ 353. $x \le 4$
	1 1 1 1	

Describe what was done to the first inequality to result in the second inequality.

True or false? If it is false, correct it.

354. T or F.	355. T or F.	356. T or F.	357. T or F.
If $x - 5 > 12$ then	If x + 5 > -4 then	If -2x > -10 then	If -3x > -30 then
x > 17.	x < -9.	x > 5.	10 > x .
358. T or F.	359. T or F.	360. T or F.	361. T or F.
If $2(x-5) > -14$ then	If -3x + 6 > -9 then	If $-2(x+6) > 16$ then	If x - 10 > 20 then
(x-5) < -7.	x - 2 < 3.	-8 > x+6.	30 < x .

Challenge #31:

362. Solve -6m+3>2m+19 and graph your solution Write down the steps to solve the challenge to the left. on a number line.

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

Solving Problems with Linear Inequalities

Solve each inequality. 364. –5*m* + 3 ≤ –7 365. $-24m + 5 \ge -7$ 363. Solve -6m+3>2m+19. Subtract 2m from both sides. -6m-2m+3>2m-2m+19 -8m+3>19 Subtract three from both sides. -8m+3-3>19-3 -8m>16 $367. -13m + 5 \ge 11m - 3$ 366. 5m - 1 > -3m + 2Divide both sides by -8 and flip the inequality. <u>-8m 16</u> -8 -8 m < -2Check your answer by substituting any number less than -2 into both sides of the equation. Pay close attention! **G**Bonnie thinks she has a really cool way of solving inequalities. 368. Solve. 6m - 2 < 3m - 2369. Solve. -3m - 8 < 1m - 4Convert 6m - 2 < 3m - 2 to 6m - 2 = 3m - 2. *Convert* -3m - 8 < 1m - 4 *to* -3m - 8 = 1m - 4. 6m - 2 = 3m - 2-3m - 8 = 1m - 43m - 2 = -2-4m - 8 = -43M = 0 -4m = 4m = 0m = -1 Convert back Convert back m=0 convert back m<0 m = -1 convert back m < -1371. Does her strategy work? Why or why not? 370. Does her strategy work? Why or why not? 372. Which has more solutions 2x + 7 = 9 or Explain your answer.

2x + 7 > 9.

373. –2 <i>x</i> – 5 ≥ 7	374. 2 $(x+5)$ - 3 < 12	37512x + 30 > 8x + 50
0	-9-8-7-6-5-4-3-2-10123456789	0
-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9		-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
$376 - \frac{2x}{x} - 3 < x + 7$	377. Spot the error.	$\frac{2}{378} - \frac{2}{2}(x+6) < 2$
5	$-7(x+2) \ge 5(x-1)$	3(2+0) 2
	- 14	
	$-7x - 14 \ge 5x - 5$	
	<i>-12x-14≥-5</i>	
	<i>-12x≥9</i>	
	$x \ge 9/12 \rightarrow x \ge 0.75$	
	7	
-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9		-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

Solve each inequality and graph the solution on the number line.

Challenge #32:

379. Many banks now allow you to invest up to \$5000 per year in high interest savings accounts without being taxed. Saevmor, has already invested \$2320 this year. He is trying to put as much money as possible in this account. Write and solve an inequality to represent how much he can still invest without being taxed.	 380. Tok Alut, is trying to decide between two phone plans. His options include: Chatzilla economy plan: \$20/ month and \$0.80 for every minute above 300 minutes. Chatzilla premium plan: \$70/ month and \$0.10 for every minute above 300 minutes. Write and solve an inequality to explain when it costs less to use the premium plan.
---	--

Define a variable, write an inequality and solve each problem.

381. Many banks now allow you to invest up to \$5000 per year in high interest savings	382. Suzy's Shoe Store pays their employees an hourly rate plus a bonus for sales over \$2500 non-weak. Nickes and \$1802.75 in
accounts without being taxed. Saevmor, has	\$2000 per week. Nidkee sold \$1882.75 m
trying to put as much money as possible in	solve an inequality to represent what sale
this account. Write and solve an inequality to	amounts will lead to a bonus for this week.
represent how much he can still invest	
without being taxed.	
Possible solution strategy: Let x - the amount of money he can still invest x +2320 \leq 5000 $x \leq$ 2680 Saevmone can invest at most an additional \$2680.	
 383. Tok Alut, is trying to decide between to phone planes. His options include: Chatzilla economy plan: \$20/ month and \$0.80 for every minute above 300 minutes. Chatzilla premium plan: \$70/ month and \$0.10 for every minute above 300 minutes. Write an inequality to explain when it costs less to use the premium plan. Possible solution strategy: Let m=number of additional minutes. 	384. Gabmore Wireless charges \$40/ month plus \$0.50 for all minutes above 500 minutes per month. Budd Jet has decided that he does not want to pay more than \$60 per month. Write and solve an inequality to represent how many minutes he can use per month without going over he \$60 limit
Premium plan > \$20 + 0.0m Premium plan > \$70 + 0.1m Economy costs less than premium when: \$20 + 0.8m>\$70 + 0.1m \$20 + 0.7m>\$70 0.7m>\$50 m~71.4285 The premium plan is a better deal if Tok plans to use more than 71 additional minutes or a total of 371 monthly minutes.	

, , ,	
385. When the difference of a number and seven is tripled, the result is bigger than 45. Write an inequality to represent all the numbers that are answers to this question.	386. Wondorf has 64 meters of fencing material available to build a rectangular fence. He wants his fence to be 8 meters longer than it is wide. Write and solve an inequality to represent the possible side lengths.
387. Vertical Wireless charges \$50/ month plus \$0.25 for all minutes above 400 minutes per month. Frue Gal has decided that she does not want to pay more than \$70 per month. Write and solve an inequality to represent how many minutes she can use per month without going over her \$70 limit. Approximate your solution on the number line.	 388. Bes Deel, is trying to decide between two phone plans. Her options include: Vertical budget plan: \$30/month and \$0.75 for every minute above 400 minutes. Vertical premium plan: \$60/ month and \$0.20 for every minute above 400 minutes. Write and solve an inequality to explain when it costs less to use the premium plan. Approximate your solution on the number line.

Define a variable, write an inequality and solve each problem.

Solve each inequality to one decimal.

389. Solve. 5.2m - 8.4 < 1.3m - 1.6	390. Solve. $2(m-1.4) < -7.3m+8.5$	391. Solve. −1.8m − 2.4 < 10(m − 2.6)

Review Check List

Definitions:		Pg #	Face it
		_	©⊗*
Go to page 3 and write down any	Define each word and be able to show your	3	
definitions that you are unsure of.	understanding with examples.		

		Pg #	Face it ☺⊗
Model the solution of a given linear equation using concrete or pictorial representations, and record the process.	Write an expression using algebra stones or algebra tiles to solve equations	4-7	
Determine, by substitution, whether a given rational number is a solution to a given linear equation.	Is m=5 a solution to the equation $2(m+2) = 14$?	12	
Solve a given linear equation symbolically.	Solve. 6m+3=2m+15.	13	
Identify and correct an error in a given incorrect solution of a linear equation	Spot the error and solve5m+20=-7m-15 20=-2m-15 →5=-2m → -5/2=m	14,17 & 20	
Represent a given problem using a linear equation.	A number is multiplied by negative two and then decreased by five and the result is twenty-nine. Find the number.	21	
Solve a given problem using a linear equation and record the process.	Bock Sout has 68 meters of fencing to build a fence. He wants the length to be 4 meters longer than the width. Write an algebraic equation and determine the dimensions of the rectangular fence.	10	
Translate a given problem into a single variable linear inequality using the symbols $2, 2, < 0$, or 2 .	Write an expression to represent the following statement: Melanie needs at least \$280 for snow boarding.	30	
Determine if a given rational number is a possible solution of a given linear inequality.	Which of the statements is 3.5 a solution to? $x > 2$, $x \ge 4$, $x \le 3$, $x < -2$	30	
Generalize and apply a rule for subtracting a positive or negative number to determine the solution of a given inequality.	Given $x + a > 5$ or $x + a \ge 5$ explain what you need to do to isolate x.	34	
Generalize and apply a rule for multiplying or dividing by a positive or negative number to determine the solution of a given inequality.	Create a rule for multiplying or dividing by a negative number to determine the solution of an inequality:	35	
Solve a given linear inequality algebraically and explain the process orally or in written form.	Solve -6m+3>2m+19.	37	
Compare and explain the process for solving a given linear equation to the process for solving a given linear inequality.	Convert $-3m - 5 < 1m - 4$ to $-3m - 5 = 1m - 4$ and solve the equation. Can this strategy be used to solve the inequality?	38	
Graph the solution of a given linear inequality on a number line.	Solve $-2x + 5 \ge -17$ on the number line.	39	
Compare and explain the solution of a given linear equation to the solution of a given linear inequality.	Which has more solutions $2x + 7 = 9$ or $2x + 7 > 9$. Explain your answer.	38	
Verify the solution of a given linear inequality using substitution for multiple elements in the solution.	Solve $x + 5 \ge 7$ for x and verify your solution by substituting 3 different numbers into the inequality.	34	
Solve a given problem involving a single variable linear inequality and graph the solution.	Vertical Wireless charges \$50/ month plus \$0.25 for all minutes above 400 minutes per month. Frue Gal has decided that she does not want to pay more than \$70 per month. Write an inequality to represent how many minutes she can use per month without going over her \$70 limit. Approximate your solution on the number line.	41	

*Face it. When you have mastered the content draw a © OR if you are unsure, draw a ⊗ and ask for help.

Score:_____33

Practice Test

- Write this test and do not look at the answers until you have completed the entire test.
- Mark the test and decide whether or not you are happy with the result. FACE IT!
- Successful students will go back in the guidebook and review any questions they got wrong on this test.

Write an equation to represent each set of algebra stones.

Solve for m.

Spot the error.			
25. Spot the error and solve.	26. Spot the er	ror and solve.	27. Tor F.
$-\frac{m}{m}-5=25$	-7(x+2)≥	5(x-1)	If - 2(x + 6) > 16 then
3 -m-5=75	7~ 11~5~ 5		-8 > x + 6.
=80	$-7x - 14 \ge 5x - 5$ $-12x - 14 \ge -5$		
<i>m=-80</i>	<i>-12x≥9</i>		28. 101°F. If-3x>-30 then 10>x
	x≥9/12→x≥0.75		
29. Three times the opposite of a positive number increased by five is negative twenty-five. Find the number.	30. An author re dollars in ad for sale of H How many b sold for the a total of \$9	eceived \$6000 lvance plus \$3 his new book. ooks must be author to make 9600?	31. A square sheet of paper is folded in half to form a rectangle. The perimeter of the rectangle is 60 cm. Determine the dimension of the square if the length of the rectangle is twice as long as the width?
32. Sargent has up to 50 meters material available to build a f his fence to be 4 meters long wide. Define a variable, write inequality to represent the po lengths.	of fencing ence. He wants eer than it is e and solve an ossible side	 33. Tok Lesh, is phone plans. Chatzilla eco \$0.70 for ev Chatzilla pre \$0.05 for ev Write and solve is cheaper to ch 	trying to decide between to His options include: nomy plan: \$30/ month and ery minute above 400 minutes. mium plan: \$80/ month and ery minute above 400 minutes. an inequality to explain when it oose the premium plan.

Solving Equations Answer Key

1.	6
2.	5
3.	24
4.	3
5.	9x+4
6.	12x-6
7	-8y+4
0	7 _W 2
0.	-/x-2
9.	x+3=14
10.	x+3=10
11.	3x=15
12.	x=11
13.	x=7
14.	x=5
15.	x+4=12
16.	x+6=9
17.	4x=-12
18	v=8
10.	x-0 y-2
19.	x-3
20.	x=-5
21.	yes
22.	yes
23.	yes
24.	yes
25.	m=11
26.	m=1
27.	m=10
28.	m=3
29	subtracting
20	adding
30. 21	duullig diaidia a
31.	
32.	multipling
33.	zero (+5-5=0), one (2x1/2=1)
34.	5
35.	17
36.	5
37.	30
38.	x+6=14.8
39	x-6=5 11
40	5v-15 3
40. 41	2
41.	-3
42.	+0
43.	divide by 3
44.	multiply by 4
45.	divide by -5
46.	-7
47.	mulitply by -3
48.	divide by -3
49.	-2, 24/23
50.	3x+6=12.2
51	2x-4=10 7
52	-6y+7-12 -1
52.	-0x + 7 = 13, -1
ວວ. ⊏₄	3x+4=13, 3
54.	2X-9=3,0
55.	-4x+1=-11, 3
56.	7, Plug m=7 into 4m+3=31 and
	confirm that it is true.
57.	7
58.	10
59.	11

		103 no
	-10	104
60.		104. yes
	3	105. yes
	5	106 no
61.	-15	100. 110
62	-1	107. no
62.	1	108. m= -7
63.	-2	100 m = 12
64.	-2	109. III12
65	3	40
05.	5	110
66.	-10	110. m=
67.	4	3
60	20	111 m - E
00.	20	111. IIIJ
69.	m= 20	
70.	m= 20	
71	m = 10	112 2
/1.	111-10	112.2
72.	m= -10	113. 3
73.	m= -45	1141
74		115 0
74.	m = 20	115.3
75.	m= -81	116. 2
76	m22	117 3
70.	$\Pi = -2.2$	117.5
	27	118. m= 3
77	-27	119. m= 3
//.	m=	120
	4	120. m= -4
70	m- 10	121. m= -6
70.	III= 10	122 m= 5
	E1	122. m= 5
70	51	8
79.	m=	122 m- 0
	5	125. m= —
	-	3
	10	124 m = -2
00	<u>10</u>	124. 1112
00.		35
	3	125
		9
~ 1		
81.	Incorrect: m= -12	126. m= -1
82.	Incorrect: m= -90	
02	Connect 12	15
83.	Correct: -12	127. m= —
84.	m= -17	4
85	m = 10	
0.0.	101 = • 101	•
07	1110	128. m= -10
86.	m = 10	128. m= -10
86. 87.	m= 10 15 by 19	128. m= -10 - 3 !
86. 87. 88	m=10 15 by 19 1900	128. m= -10 129. m= $\frac{-3!}{129}$
86. 87. 88.	m= 10 15 by 19 1900	128. m= -10 129. m= $\frac{-3!}{2}$
86. 87. 88.	m= 10 15 by 19 1900	128. m= -10 129. m= $\frac{-3!}{2}$
86. 87. 88.	$m = 10$ 15 by 19 1900 28.888° or $38\frac{8}{2}$ °	128. m= -10 129. m= $\frac{-3!}{2}$
86. 87. 88. 89.	$m = 10$ $m = 10$ $15 \text{ by } 19$ 1900 $38.888^{\circ} \text{ or } 38\frac{8}{2}^{\circ}$	128. m= -10 129. m= $\frac{-3!}{2}$
86. 87. 88. 89.	$m = 10$ $15 \text{ by } 19$ 1900 $38.888^{\circ} \text{ or } 38\frac{8}{9}^{\circ}$	128. m= -10 129. m= $\frac{-3!}{2}$
86. 87. 88. 89.	$m = 10$ 15 by 19 1900 38.888° or $38\frac{8}{9}°$ 7	128. m= -10 129. m= $\frac{-3!}{2}$ 130. 11cm by
 86. 87. 88. 89. 90. 01 	$m = 10$ $m = 10$ $15 by 19$ 1900 $38.888° \text{ or } 38\frac{8}{9}°$ 7 7	128. m= -10 129. m= $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by
86.87.88.89.90.91.	m = 10 15 by 19 1900 38.888° or $38\frac{8}{9}°$ 7 m = 7	128. m= -10 129. m= $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km
86.87.88.89.90.91.	$m = 10$ 15 by 19 1900 38.888° or $38\frac{8}{9}^{\circ}$ 7 m= 7	128. m = -10 129. m = $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km
 86. 87. 88. 89. 90. 91. 	$m = 10$ $m = 10$ $15 by 19$ 1900 $38.888° \text{ or } 38\frac{8}{9}°$ 7 $m = 7$ 40	128. m= -10 129. m= $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625
 86. 87. 88. 89. 90. 91. 92. 	$m = 10$ $m = 10$ $15 \text{ by } 19$ 1900 $38.888^{\circ} \text{ or } 38\frac{8}{9}^{\circ}$ 7 $m = 7$ $m = \frac{40}{38}$	128. m= -10 129. m= $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4
 86. 87. 88. 89. 90. 91. 92. 	$m = 10$ $m = 10$ $15 \text{ by } 19$ 1900 $38.888^{\circ} \text{ or } 38\frac{8}{9}^{\circ}$ 7 $m = 7$ $m = \frac{40}{3}$	128. m= -10 129. m= $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 125. 2
 86. 87. 88. 89. 90. 91. 92. 	$m = 10$ $m = 10$ $15 \text{ by } 19$ 1900 $38.888° \text{ or } 38\frac{8}{9}°$ 7 $m = 7$ $m = \frac{40}{3}$	128. m= -10 129. m= $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 135. 2
 86. 87. 88. 89. 90. 91. 92. 93. 	$m = 10$ $15 \text{ by } 19$ 1900 $38.888^{\circ} \text{ or } 38\frac{8}{9}^{\circ}$ 7 $m = 7$ $m = \frac{40}{3}$ $m = -3$	128. m= -10 129. m= $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 135. 2 136. 2
 86. 87. 88. 89. 90. 91. 92. 93. 94. 	$m = 10$ $15 \text{ by } 19$ 1900 $38.888^{\circ} \text{ or } 38\frac{8}{9}^{\circ}$ 7 $m = 7$ $m = \frac{40}{3}$ $m = -3$ $m = 4$	128. m = -10 129. m = $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 135. 2 136. 2 1372
 86. 87. 88. 89. 90. 91. 92. 93. 94. 	$m = 10$ $15 \text{ by } 19$ 1900 $38.888^{\circ} \text{ or } 38\frac{8}{9}^{\circ}$ 7 $m = 7$ $m = \frac{40}{3}$ $m = -3$ $m = 4$	128. m = -10 129. m = $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 135. 2 136. 2 1372 139. c
 86. 87. 88. 89. 90. 91. 92. 93. 94. 	$m = 10$ $15 \text{ by } 19$ 1900 $38.888^{\circ} \text{ or } 38\frac{8}{9}^{\circ}$ 7 $m = 7$ $m = \frac{40}{3}$ $m = -3$ $m = 4$ -15	128. m = -10 129. m = $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 135. 2 136. 2 1372 1386
 86. 87. 88. 89. 90. 91. 92. 93. 94. 95 	$m = 10$ $m = 10$ $15 by 19$ 1900 $38.888° \text{ or } 38\frac{8}{9}°$ 7 $m = 7$ $m = \frac{40}{3}$ $m = -3$ $m = 4$ $m = \frac{-15}{3}$	128. m = -10 129. m = $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 135. 2 136. 2 1372 1386 1393
 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 	$m = 10$ $m = 10$ $15 by 19$ 1900 $38.888° \text{ or } 38\frac{8}{9}°$ 7 $m = 7$ $m = \frac{40}{3}$ $m = -3$ $m = 4$ $m = \frac{-15}{2}$	128. m = -10 129. m = $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 135. 2 136. 2 1372 1386 1393 1402
 86. 87. 88. 90. 91. 92. 93. 94. 95. 	$m = 10$ $15 \text{ by } 19$ 1900 $38.888^{\circ} \text{ or } 38\frac{8}{9}^{\circ}$ 7 $m = 7$ $m = \frac{40}{3}$ $m = -3$ $m = 4$ $m = \frac{-15}{2}$	128. m = -10 129. m = $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 135. 2 136. 2 1372 1386 1393 1402
 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96 	$m = 10$ $m = 10$ $15 by 19$ 1900 $38.888° \text{ or } 38\frac{8}{9}°$ 7 $m = 7$ $m = \frac{40}{3}$ $m = -3$ $m = 4$ $m = \frac{-15}{2}$ 1	128. m = -10 129. m = $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 135. 2 134. 4 135. 2 136. 2 1372 1386 1393 1402 141. m = -2
 86. 87. 88. 90. 91. 92. 93. 94. 95. 96. 27. 	$m = 10$ $m = 10$ $15 by 19$ 1900 $38.888° \text{ or } 38\frac{8}{9}°$ 7 $m = 7$ $m = \frac{40}{3}$ $m = -3$ $m = 4$ $m = \frac{-15}{2}$ 1	128. m= -10 129. m= $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 135. 2 136. 2 1372 1386 1393 1402 141. m= -2
 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 	$m = 10$ $m = 10$ $15 by 19$ 1900 $38.888° \text{ or } 38\frac{8}{9}°$ 7 $m = 7$ $m = \frac{40}{3}$ $m = -3$ $m = 4$ $m = \frac{-15}{2}$ 1 -1	128. m = -10 129. m = $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 135. 2 136. 2 1372 1386 1393 1402 141. m = -2 13
 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 95. 96. 97. 98. 	$m = 10$ $m = 10$ $15 by 19$ 1900 $38.888° \text{ or } 38\frac{8}{9}°$ 7 $m = 7$ $m = \frac{40}{3}$ $m = -3$ $m = 4$ $m = \frac{-15}{2}$ 1 -1 4	128. m = -10 129. m = $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 135. 2 134. 4 135. 2 134. 4 135. 2 134. 6 1393 1402 141. m = -2 142. m = $\frac{13}{2}$
 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 	$m = 10$ $m = 10$ $15 by 19$ 1900 $38.888° \text{ or } 38\frac{8}{9}°$ 7 $m = 7$ $m = \frac{40}{3}$ $m = -3$ $m = 4$ $m = \frac{-15}{2}$ 1 $1 \text{ is the only solution}$	128. m = -10 129. m = $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 135. 2 136. 2 1372 1386 1393 1402 141. m = -2 142. m = $\frac{13}{18}$
 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 95. 96. 97. 98. 99. 	$m = 10$ $m = 10$ $15 by 19$ 1900 $38.888° \text{ or } 38\frac{8}{9}°$ 7 $m = 7$ $m = \frac{40}{3}$ $m = -3$ $m = 4$ $m = \frac{-15}{2}$ 1 -1 4 $1 \text{ is the only solution}$	128. m= -10 129. m= $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 135. 2 136. 2 1372 1386 1393 1402 141. m= -2 142. m= $\frac{13}{18}$
 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100 	$m = 10$ $m = 10$ $15 by 19$ 1900 $38.888° \text{ or } 38\frac{8}{9}°$ 7 $m = 7$ $m = \frac{40}{3}$ $m = -3$ $m = 4$ $m = \frac{-15}{2}$ 1 -1 4 $1 \text{ is the only solution}$ Yes	128. m = -10 129. m = $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 135. 2 136. 2 1372 1386 1393 1402 141. m = -2 142. m = $\frac{13}{18}$ 143. m = 1
 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100 	$m = 10$ $m = 10$ $15 by 19$ 1900 $38.888° \text{ or } 38\frac{8}{9}°$ 7 $m = 7$ $m = \frac{40}{3}$ $m = -3$ $m = 4$ $m = \frac{-15}{2}$ 1 -1 4 $1 \text{ is the only solution}$ Yes No	128. m = -10 129. m = $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 135. 2 136. 2 1372 1386 1393 1402 141. m = -2 142. m = $\frac{13}{18}$ 143. m = 1
 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100 101 	$m = 10$ $m = 10$ $15 by 19$ 1900 $38.888° \text{ or } 38\frac{8}{9}°$ 7 $m = 7$ $m = \frac{40}{3}$ $m = -3$ $m = 4$ $m = \frac{-15}{2}$ 1 -1 4 $1 \text{ is the only solution}$ Yes No	128. m = -10 129. m = $\frac{-3!}{2}$ 130. 11cm by 131. 11cm by 132. 14km 133. \$625 134. 4 135. 2 136. 2 1372 1386 1393 1402 141. m = -2 142. m = $\frac{13}{18}$ 143. m = 1

118. m= 3 119. m= 3 120. m= -4 121. m= -6 122. m= 5 123. m= $\frac{8}{3}$ 124. m= -2 125. -<mark>35</mark> 9 126. m= -1 127. m= $\frac{15}{4}$ 128. m= -10 129. m= -35 2 130. 11cm by 11cm 131. 11cm by 11cm

132. 14km 133. \$625 134.4 135. 2 136. 2 137. -2 138. -6 139. -3 140. -2 141. m= -2 142. m= $\frac{13}{18}$ 143. m= 1

	1
144.	$m = \frac{1}{m}$
	2
115	
145.	III= 0
	3
146.	m=
	5
	2
147	<u> </u>
147.	^{III−} Λ
	т (
148.	m= 6
	-18
149.	m=
	7
150.	m= -4
	1
151	$m = \frac{m}{m}$
151.	^{m-} 6
150	V Maltinla hatkatida h
152.	Multiply both sides by 3.
153.	Multiply both sides by 5.
154.	Multiply both sides by 15.
	75
155.	$m = \frac{75}{2}$
100.	22
	75
156.	m=
	22
	15
157	$m = \frac{15}{2}$
107.	7
	1.5
1 = 0	15
158.	m =
	/
	12
159.	m= —
	29
	40
1 (0	48
160.	$m = \frac{1}{5}$
	3
161.	m= 13
162.	m= 13
	-8
163.	m=
	9
164.	m= 3
	11
165	$m = \frac{11}{m}$
105.	^{111–} 16
	10
	-7
166.	m=
	12
	8
167	m= —
10/.	19
	10
	10
168.	$m = \frac{12}{12}$
	13
	25
169.	$m = \frac{1}{11}$
	11

170.	$m = \frac{13}{14}$
171.	$m = \frac{15}{14}$
172.	$m = \frac{7}{18}$
173.	m = 2.5 or 5/2
174	m = 2.5 or 5/2
175	m = 2.5 or 5/2 m = 2.5 or 5/2
170.	12
176.	$m = \frac{13}{2}$
177	
170	m = 25
170.	10
179.	$m = \frac{13}{2}$
180.	m= 6
181.	m= 8
101.	11
182.	$m=\frac{11}{3}$
183.	$m = \frac{16}{5}$
184	m= -13
104.	m=-15
185.	$m = \frac{-20}{2}$
	3
186.	m= -7
186. 187.	$m = -7$ $a(m+n) = h$ $am + an = h$ $am = h - an$ $m = \frac{h-an}{am}$
186. 187.	$m = -7$ $a(m+n) = h$ $am + an = h$ $am = h - an$ $m = \frac{h-an}{a}$
186. 187.	$m = -7$ $a(m+n) = h$ $am + an = h$ $am = h - an$ $m = \frac{h-an}{a}$ $h-an$
186. 187. 188.	$m = -7$ $a(m+n) = h$ $am + an = h$ $am = h - an$ $m = \frac{h - an}{a}$ $m = \frac{h - an}{a}$ $m = \frac{h - an}{a}$ $m = \frac{h}{a} - \frac{an}{a}$
186. 187. 188.	$m = -7$ $a(m+n) = h$ $am + an = h$ $am = h - an$ $m = \frac{h - an}{a}$
186.187.188.189.	$m = -7$ $a(m+n) = h$ $am + an = h$ $am + an = h$ $am = h - an$ $m = \frac{h - an}{a}$ $m = \frac{h}{a} - n$ $m = 25$
186.187.188.189.190.	$m = -7$ $a(m+n) = h$ $am + an = h$ $am + an = h$ $am = h - an$ $m = \frac{h - an}{a}$
 186. 187. 188. 189. 190. 191 	$m = -7$ $a(m+n) = h$ $am + an = h$ $am = h - an$ $m = \frac{h-an}{a}$ $m = \frac{h-an}{a}$ $m = \frac{h}{a} - \frac{an}{a}$ $m = \frac{h}{a} - n$ $m = 25$ $m = 6$
 186. 187. 188. 189. 190. 191. 192. 	$m = -7$ $a(m+n) = h$ $am + an = h$ $am = h - an$ $m = \frac{h-an}{a}$ $m = \frac{h-an}{a}$ $m = \frac{h}{a} - \frac{an}{a}$ $m = \frac{h}{a} - n$ $m = 25$ $m = 35$ $m = 6$ $m = 60$
 186. 187. 188. 189. 190. 191. 192. 192. 192. 	$m = -7$ $a (m+n) = h$ $am + an = h$ $am + an = h$ $am = h - an$ $m = \frac{h - an}{a}$ $m = \frac{h - an}{a}$ $m = \frac{h}{a} - \frac{an}{a}$ $m = \frac{h}{a} - n$ $m = 25$ $m = 35$ $m = 6$ $m = 60$ $m = 30 - n$
 186. 187. 188. 189. 190. 191. 192. 193. 194. 	$m = -7$ $a (m+n) = h$ $am + an = h$ $am + an = h$ $am = h - an$ $m = \frac{h - an}{a}$ $m = \frac{h - an}{a}$ $m = \frac{h - an}{a}$ $m = \frac{h}{a} - \frac{an}{a}$ $m = \frac{h}{a} - n$ $m = 25$ $m = 35$ $m = 6$ $m = 60$ $m = 30 - n$ $m = 20 + n$
 186. 187. 188. 189. 190. 191. 192. 193. 194. 	$m = -7$ $a (m+n) = h$ $am + an = h$ $am + an = h$ $am = h - an$ $m = \frac{h - an}{a}$ $m = \frac{h - an}{a}$ $m = \frac{h - an}{a}$ $m = \frac{h - a}{a}$ $m = \frac{h}{a} - n$ $m = 25$ $m = 35$ $m = 6$ $m = 60$ $m = 30 - n$ $m = 30 + n$
 186. 187. 188. 189. 190. 191. 192. 193. 194. 	$m = -7$ $a(m+n) = h$ $am + an = h$ $am + an = h$ $am = h - an$ $m = \frac{h - an}{a}$ $m = $
 186. 187. 188. 189. 190. 191. 192. 193. 194. 195. 	$m = -7$ $a(m+n) = h$ $am + an = h$ $am + an = h$ $am = h - an$ $m = \frac{h - an}{a}$ $m = \frac{an}{a}$ $m = \frac{30}{a}$
 186. 187. 188. 189. 190. 191. 192. 193. 194. 195. 	$m = -7$ $a (m+n) = h$ $am + an = h$ $am = h - an$ $m = \frac{h-an}{a}$ $m = \frac{h-an}{a}$ $m = \frac{h}{a} - \frac{an}{a}$ $m = \frac{h}{a} - n$ $m = 25$ $m = 35$ $m = 6$ $m = 60$ $m = 30 - n$ $m = 30 + n$ $m = \frac{30}{n}$
 186. 187. 188. 189. 190. 191. 192. 194. 195. 196. 	$m = -7$ $a (m+n) = h$ $am + an = h$ $am = h - an$ $m = \frac{h-an}{a}$ $m = \frac{h-an}{a}$ $m = \frac{h}{a} - \frac{an}{a}$ $m = \frac{h}{a} - n$ $m = 25$ $m = 35$ $m = 60$ $m = 30 - n$ $m = 30 + n$ $m = \frac{30}{n}$ $m = 30n$
 186. 187. 188. 189. 190. 191. 192. 193. 194. 195. 196. 197. 	$m = -7$ $a (m+n) = h$ $am + an = h$ $am = h - an$ $m = \frac{h-an}{a}$ $m = \frac{h-an}{a}$ $m = \frac{h}{a} - \frac{an}{a}$ $m = \frac{h}{a} - n$ $m = 25$ $m = 35$ $m = 6$ $m = 30 - n$ $m = 30 + n$ $m = \frac{30}{n}$ $m = 30n$ $m = x - n$
 186. 187. 188. 189. 190. 191. 192. 193. 194. 195. 196. 197. 198. 	a(m+n) = h am + an = h am + an = h am = h - an $m = \frac{h - an}{a}$ $m = \frac{h - an}{a}$ $m = \frac{h}{a} - \frac{an}{a}$ $m = \frac{h}{a} - n$ m = 25 m = 35 m = 6 m = 30 + n m = 30n m = x - n m = x + n
 186. 187. 188. 189. 190. 191. 192. 193. 194. 195. 196. 197. 198. 199. 	$m = -7$ $a (m+n) = h$ $am + an = h$ $am = h - an$ $m = \frac{h - an}{a}$ $m = 25$ $m = 35$ $m = 60$ $m = 30 - n$ $m = x + n$ $m = \frac{x}{n}$
 186. 187. 188. 189. 190. 191. 192. 193. 194. 195. 196. 197. 198. 199. 199. 	$m = -7$ $a (m+n) = h$ $am + an = h$ $am = h - an$ $m = \frac{h - an}{a}$ $m = \frac{h - an}{a}$ $m = \frac{h - a}{a}$ $m = \frac{h}{a} - n$ $m = 25$ $m = 35$ $m = 6$ $m = 30 - n$ $m = 30 + n$ $m = \frac{30}{n}$ $m = x + n$ $m = \frac{x}{n}$

201. m= x - ng
202. m= x + ng
203. m=
$$\frac{x}{ng}$$

204. m= ngx
205. m= 15
206. m= 20
207. m= 14
208. m= 40
209. m= $\frac{35 - n}{2}$ or $17.5 - \frac{n}{2}$
210. m= $\frac{35 + n}{2}$ or $17.5 + \frac{n}{2}$
211. m= 15 - n
212. m= 60 - 2n
213. m= $\frac{B - n}{A}$ or $\frac{B}{A} - \frac{n}{A}$
214. m= $\frac{B + n}{A}$ or $\frac{B + An}{A}$
215. m= $\frac{B}{A} - n$ or $\frac{B + An}{A}$
216. m= (B-n)A OR AB, An
217. $\frac{5}{9} (F - 32) = C$ or
 $\frac{5F}{9} - \frac{160}{9} = C$
218. Same as 217
219. 2A/h
220. 9.2
221. $w = \frac{P - 2I}{2}$ or $\frac{P}{2} - I$
222. 17.5 cm
223. M= $\frac{6}{5}$
224. M= $\frac{5}{3}$
225. M= $\frac{6}{5}$
226. M= $\frac{5}{3}$
227. M= $\frac{25}{2}$
228. M= 6
229. M= $\frac{9}{2}$

230. M =
$$\frac{10}{3}$$

231. M = $\frac{20}{3}$
232. M = $\frac{15}{2}$
233. M = $\frac{C}{AB}$
234. B = $\frac{C}{AM}$
235. M = CAB
236. B = $\frac{M}{AC}$ □
237. M = $\frac{AB}{C}$
238. B = $\frac{CM}{A}$
239. M = $\frac{AC}{B}$ □
240. B = $\frac{AC}{M}$
241. M = B - N
242. M = $\frac{6B - 2N}{5}$
243. M = $\frac{4}{A} + N$
244. M = $\frac{5}{2N} - A$
245. M = N - B
246. M = $\frac{6B + 2N}{5}$
247. m ≥280
248. A,D,H
249. D & H
250. <
251. >
252. >
253. >
254. <
255. >
255. >
256. <
257. <
258. >
259. <
260. m ≥280
261. t<15
262. A > 100
263. D < 12
264. J ≥ 100

265 5-148
205. 52140 266 U-210
200. H=210
267. K≤120
268. R≤20
269. A
270. B,C
271. A,D
272. C,D
. —
273. X is greater than 1, $x > 1$
274 X is less than or equal to 2
$x \leq 2$
275. X does not equal -1, $x \neq -1$
276 V (1×1) (1×1)
276. X is greater than 1, $\lambda > 1$
277. X is less than or equal to 2,
x < 2
··· = =
278. X does not equal -1, $x \neq -1$
279. X is less than 1. $x < 1$
280 X is greater than or equal to 3
~ 200
$x \ge 5$
281. X is greater than -2, $x > -2$
282. X is equal to 1. $x = 1$
202 Via equal to $2 r = -2$
205. X is equal to -2, $\chi = -2$
284. X is greater than or equal to 2,
$x \ge 2$
285
3 /
286.
287.
288. 3
^{289.} -2
200
-1
291
-3
292
-2
202 V 7
(9) (2)
293. A>7 294. X≥3.2
293. X>7 294. X≥3.2 295. m<7
295. x>7 294. x≥3.2 295. m≤7 296. n≥0
295. x>7 294. X≥3.2 295. m≤7 296. n>0 297. v≠2
295. x>7 294. X≥3.2 295. m≤7 296. n>0 297. y≠2
295. x>7 294. X≥3.2 295. m≤7 296. n>0 297. y≠2 298. x≥4 200. x<0
295. $x > 7$ 294. $X \ge 3.2$ 295. $m \le 7$ 296. $n > 0$ 297. $y \ne 2$ 298. $x \ge 4$ 299. $x < 0$ 200. $y = 4$
295. $x > 7$ 294. $X \ge 3.2$ 295. $m \le 7$ 296. $n > 0$ 297. $y \ne 2$ 298. $x \ge 4$ 299. $x < 0$ 300. $y = 4$
295. $x > 7$ 294. $X \ge 3.2$ 295. $m \le 7$ 296. $n > 0$ 297. $y \ne 2$ 298. $x \ge 4$ 299. $x < 0$ 300. $y = 4$ 301. $-4 \le x < 11$
293. $x > 7$ 294. $X \ge 3.2$ 295. $m \le 7$ 296. $n > 0$ 297. $y \ne 2$ 298. $x \ge 4$ 299. $x < 0$ 300. $y = 4$ 301. $-4 \le x < 11$ 302.
293. $x > 7$ 294. $X \ge 3.2$ 295. $m \le 7$ 296. $n > 0$ 297. $y \ne 2$ 298. $x \ge 4$ 299. $x < 0$ 300. $y = 4$ 301. $-4 \le x < 11$ 302. -7 -1
293. $x > 7$ 294. $x \ge 3.2$ 295. $m \le 7$ 296. $n > 0$ 297. $y \ne 2$ 298. $x \ge 4$ 299. $x < 0$ 300. $y = 4$ 301. $-4 \le x < 11$ 302. -7 -7 303. $x = \$$ amount that a commission is made. $x > 5000$
293. $x > 7$ 294. $X \ge 3.2$ 295. $m \le 7$ 296. $n > 0$ 297. $y \ne 2$ 298. $x \ge 4$ 299. $x < 0$ 300. $y = 4$ 301. $-4 \le x < 11$ 302. -7 303. $x = \$$ amount that a commission is made. $X > 5000$
295. $X > 7$ 294. $X \ge 3.2$ 295. $m \le 7$ 296. $n > 0$ 297. $y \ne 2$ 298. $x \ge 4$ 299. $x < 0$ 300. $y = 4$ 301. $-4 \le x < 11$ 302. -7 -1 303. $x = \$$ amount that a commission is made. $X > 5000$ 304. -2.7
295. $X > 7$ 294. $X \ge 3.2$ 295. $m \le 7$ 296. $n > 0$ 297. $y \ne 2$ 298. $x \ge 4$ 299. $x < 0$ 300. $y = 4$ 301. $-4 \le x < 11$ 302. -7 -1 303. $x = \$$ amount that a commission is made. $X > 5000$ 304. -2,7
295. $X > 7$ 294. $X \ge 3.2$ 295. $m \le 7$ 296. $n > 0$ 297. $y \ne 2$ 298. $x \ge 4$ 299. $x < 0$ 300. $y = 4$ 301. $-4 \le x < 11$ 302. -7 -1 303. $x = \$$ amount that a commission is made. $X > 5000$ 304. -2.7 305. $2/6$
295. $X > 7$ 294. $X \ge 3.2$ 295. $m \le 7$ 296. $n > 0$ 297. $y \ne 2$ 298. $x \ge 4$ 299. $x < 0$ 300. $y = 4$ 301. $-4 \le x < 11$ 302. -7 -1 303. $x = \$$ amount that a commission is made. $X > 5000$ 304. -2.7 305. -2.7
295. $X > 7$ 294. $X \ge 3.2$ 295. $m \le 7$ 296. $n > 0$ 297. $y \ne 2$ 298. $x \ge 4$ 299. $x < 0$ 300. $y = 4$ 301. $-4 \le x < 11$ 302. -7 -1 303. $x = \$$ amount that a commission is made. $X > 5000$ 304. -2.7 305. -2.7 306. -2.7
295. $X > 7$ 294. $X \ge 3.2$ 295. $m \le 7$ 296. $n > 0$ 297. $y \ne 2$ 298. $x \ge 4$ 299. $x < 0$ 300. $y = 4$ 301. $-4 \le x < 11$ 302. -7 -1 303. $x = \$$ amount that a commission is made. $X > 5000$ 304. -2.7 305. -2.7 306. 7.8
295. $X > 7$ 294. $X \ge 3.2$ 295. $m \le 7$ 296. $n > 0$ 297. $y \ne 2$ 298. $x \ge 4$ 299. $x < 0$ 300. $y = 4$ 301. $-4 \le x < 11$ 302. -7 -1 303. $x = \$$ amount that a commission is made. $X > 5000$ 304. -2.7 305. -2.7 306. -2.7 306. -2.7 307. -7 -1.33

307.
3084≤x<11
309 -10/2/-2
3101≤x<3
$\leftarrow \bigcirc \frown \frown \frown \frown \frown $
3117 -1
•
312. <
-5 3
-
313.
3 7
314.
-4 28
315.
-7.2 0
316.
317. C>\$5000 ~l
318. $220 \le B \le 229$. for B=mass in grams
319 L<15 for L= Distances that get
lower rate
320 0 < 1 < 5 for 1 = possible side
longtha
221 0 d. 4 for L monsible side
321. 0 <l≤4 for="" l="possible" side<="" td=""></l≤4>
lengths
322. x≥2
323. Subtract a from both sides
324. Add a to both sides
325. X≥2
326. X<1
327. X>4
328. X<10
329. x≠-6
330. x<4
331. 0 <w≤11 4<l≤15.<="" and="" td=""></w≤11>
332. He plays at most 25 rounds of
$rolf \chi < 25$
333. $0 < W \le 11$ and $4 < L \le 15$,
334. $0 < W \le 9.5$ and $5 < L \le 14.5$,
335. He play at most 25 rounds of
golf.
336. All numbers less than 12.
337. 3,4,
338. x>2
339. Answers will vary
340,-4,-3
341. x<-2
342. Answers will vary
343. Change the direction of the
inequality when the dividing or
multiplying by a negative
number.
344. Yes
345. Yes
346. Yes
347. Yes
348. No40>-400
349. No4>-40
350 Change the direction
351 Subtract 4 5
352 Divide by -2
352. Divide by $-2353 Add 1 and then divide by 5$
555. Auu 1 anu men uiviue bys
2E4 T
354. T
354. T 355. F, x>-9 256. F. waf
354. T 355. F, x>-9 356. F, x<5

357. T 358. F, x-5>-7 359. T 360. T 361. T 362. *, m* < −2 363. *m* < −2 364. *m* ≥ 2 365. $m \le \frac{1}{2}$ 366. $m > \frac{3}{8}$ 367. $m \le \frac{1}{3}$ 368. *m* < 0 369. m>-1 370. Yes. Division by a positive number does not change the direction of the inequality. 371. No. Division by a negative number changes the direction of the inequality. 372. 2x+7=9 simplifies to x=1. 2x+7>9 simplifies to x>1. X>1 has infinitely more solutions than x=1. 373. x≤-6, **4** -7 374. x<2.5,

2.5

3.

4.

2x-4=-4x+8, 2

4x+4=16, 3

9. -15/2 or -7.5 10. -1 is the only solution. 11. Multiply both sides by 15. 12. -1 13. -2 14. 48/5 15. 13 16. 5/2 a – 2n 17. 2 Ьc 18. ad B,C 19. 20. X≤2, X>1 21. -4≤X<11 22. x<10, i.e. 7,8,9 AMV 23. X>-11 24. X>-50/7 25. M=-90 26. X≤-0.75 27. T 28. T 29. 10 30. 1200 20 by 20 31. 32. 0<w≤10.5, 4<L≤14.5 33. Premium is better after 77 minutes or more additional minutes.

-2x+2=-5x+5, 1

4x-1=3x-2, -1

11

5.

6.

7.

8. -45