Name: _____

2.5 Practice - Exponent Laws (Part 2)

1. Write each expression as a **product of powers** or a **quotient of powers**. DO NOT EVALUATE.

a) $(3 \times 2)^4$ b) $[(-4) \times 3]^2$ c) $[(-2) \times (-4)]^3$ d) $(7 \times 11)^0$

e)
$$(10 \div 5)^3$$
 f) $[(-12) \div (-6)]^2$ **g)** $\left(\frac{8}{4}\right)^4$ **h)** $\left(\frac{1}{10}\right)^6$

2. Write as a **single power**. DO NOT EVALUATE.

a) $(3^4)^2$ **b)** $(5^0)^3$ **c)** $-(7^2)^2$ **d)** $[(-3)^3]^2$

- **3.** Why is the value of $[(-3)^3]^2$ positive and the value of $[(-3)^3]^3$ negative?
- 4. Simplify using the exponent laws, then evaluate. a) $(2^3 \times 2^1)^2$ b) $(5^4 \div 5^2)^2$

c) $[(-3)^0 \times (-3)^3]^2$ **d)** $(10^2)^4 \div (10^3)^2$

5. Find and correct any errors in each solution.

a)
$$(4^3 \times 2^2)^2 = (8^5)^2$$

= 8^{10}
= 1 073 741 824

b)
$$[(-10)^3]^4 = (-10)^7$$

= -10 000 000

c)
$$(2^2 + 2^3)^2 = (2^5)^2$$

= 2^{10}
= 1024

2.5 Practice – Answers

- **1.** a) $3^4 \times 2^4$ b) $(-4)^2 \times 3^2$ c) $(-2)^3 \times (-4)^3$ d) $7^0 \times 11^0$ f) $(-12)^2 \div (-6)^2$ g) $\frac{8^4}{4^4}$ h) $\frac{1^6}{10^6}$
- **2.** a) 3^8 b) 5^0 c) -7^4 d) $(-3)^6$
- **3.** $[(-3)^3]^2$ is positive because it simplifies to $(-3)^6$, and the product of an even number of negative factors is positive. $[(-3)^3]^3$ is negative because it simplifies to $(-3)^9$, and the product of an odd number of negative factors is negative.
- **4. a)** $(2^3 \times 2^1)^2 = (2^4)^2 = 2^8 = 256$
 - **b)** $(5^4 \div 5^2)^2 = (5^2)^2 = 5^4 = 625$
 - c) $[(-3)^0 \times (-3)^3]^2 = [(-3)^3]^2 = (-3)^6 = 729$
 - **d)** $(10^2)^4 \div (10^3)^2 = 10^8 \div 10^6 = 10^2 = 100$
- 5. a) $(4^3 \times 2^2)^2 = 4^6 \times 2^4 = 4096 \times 16 = 65536$ b) $[(-10)^3]^4 = (-10)^{12} = 1000000000000$ c) $(2^2 + 2^3)^2 = (4 + 8)^2 = 12^2 = 144$