\qquad

2.1 Practice - What Is a Power?

1. Identify the base of each power.
a) 6^{3}
b) 2^{7}
c) $(-5)^{4}$
d) -70
2. Use repeated multiplication to show why 3^{5} is not the same as 5^{3}.
3. Complete this table.

Power	Base	Exponent	Repeated Multiplication	Standard Form
4^{4}				
$(-10)^{3}$				
	-6	2		
			$1 \times 1 \times 1 \times 1 \times 1$	

4. Write each product as a power, then evaluate.
a) 6×6
b) $3 \times 3 \times 3 \times 3 \times 3 \times 3$
c) $10 \times 10 \times 10 \times 10$
d) $-(8 \times 8 \times 8)$
e) $(-8)(-8)(-8)$
f) $-(-8)(-8)(-8)$
5. Write each power as repeated multiplication, then evaluate.
a) 7^{5}
b) 4^{6}
c) -9^{3}
d) $(-5)^{5}$
6. Evaluate each power. For each power:

- Are the brackets needed?
- If your answer is yes, what purpose do the brackets serve?
a) $(-6)^{5}$
b) $-(6)^{5}$
c) $-(-6)^{5}$
d) $\left(-6^{5}\right)$

7. Predict whether each answer is positive or negative, then evaluate.
a) $(-3)^{2}$
b) $(-3)^{3}$
c) -3^{2}
d) $-(-3)^{3}$
8. Is the value of -2^{4} different from the value of $(-2)^{4}$? Explain.
9. Stamps are sold in a 10 by 10 sheet. The total value of a sheet of stamps is $\$ 60.00$.
a) Express the number of stamps as a power and in standard form.
b) What is the value of one stamp?

2.1 Practice - Answers

1. a) 6
b) 2
c) -5
d) 7
2. $3^{5}=3 \times 3 \times 3 \times 3 \times 3=243$ and $5^{3}=5 \times 5 \times 5=125$
3.

Power	Base	Exponent	Repeated Multiplication	Standard Form
4^{4}	4	4	$4 \times 4 \times 4 \times 4$	256
$(-10)^{3}$	-10	3	$(-10)(-10)$ (-10)	-1000
$(-6)^{2}$	-6	2	$(-6)(-6)$	36
1^{5}	1	5	$1 \times 1 \times 1 \times$ 1×1	1

4. a) $6^{2}=36$
b) $3^{6}=729$
c) $10^{4}=10000$
d) $-8^{3}=-512$
e) $(-8)^{3}=-512$
f) $-(-8)^{3}=512$
5. a) $7 \times 7 \times 7 \times 7 \times 7=16807$
b) $4 \times 4 \times 4 \times 4 \times 4 \times 4=4096$
c) $-9 \times 9 \times 9=-729$
d) $(-5)(-5)(-5)(-5)(-5)=-3125$
6. a) $(-6)^{5}=-7776$; the brackets are needed; they indicate that the base is -6 .
b) $-(6)^{5}=-7776$; the brackets are not needed; the base is 6 and the power is negative.
c) $-(-6)^{5}=7776$; the brackets are needed; they indicate that the base is -6 and the sign of the expression is opposite to the sign of the value of $(-6)^{5}$.
d) $\left(-6^{5}\right)=-7776$; the brackets are not needed.
7. a) $(-3)^{2}$ is positive because the answer is the product of an even number of negative integers: 9
b) $(-3)^{3}$ is negative because the answer is the product of an odd number of negative integers: -27
c) -3^{2} is negative because the answer is the opposite of the product of an even number of positive integers: -9
d) $-(-3)^{3}$ is positive because the answer is the opposite of the product of an odd number of negative integers: 27
8. Yes, their values are different; $-2^{4}=-2 \times 2 \times 2 \times 2=-16$ and $(-2)^{4}=(-2)(-2)(-2)(-2)=16$
9. a) $10^{2}=100$
b) $60 \$$ or $\$ 0.60$
