Alberta Provincial Achievement Testing
 Subject Bulletin 2017-2018
 兔 9

Mathematics

This document was written primarily for

Students	
Teachers	\checkmark Grade 9 Mathematics
Administrators	\checkmark
Parents	
General Audience	
Others	

Distribution: This document is posted on the Alberta Education website.
Copyright 2017, the Crown in Right of Alberta, as represented by the Minister of Education, Alberta Education, Provincial Assessment Sector, 44 Capital Boulevard, 10044108 Street NW, Edmonton, Alberta T5J 5E6, and its licensors. All rights reserved.

Alberta educators may reproduce this bulletin for non-profit educational purposes only.

Contents

Grade 9 Mathematics Assessment 1
Special-format Practice Tests 1
*NEW General Description 1
*NEW Use of Calculators and Manipulatives 2
*NEW Local Marking of Test 2
*NEW Grade 9 Mathematics Achievement Test Blueprint 3
Description of Mathematics Assessment Standards 4
Acceptable Standard 4
Standard of Excellence 4
Preparing Students for the Mathematics Test 5
Suggestions for Preparing Students 5
Suggestions for Answering Questions 5
Opportunities to Participate in Test Development Activities 6
Field Testing 6
Working Groups 6
Test Development 7
*NEW Appendix 1 8
Part A: Sample Questions 8
*NEW Appendix 2 11
Levels of Item Complexity 11
*NEW Appendix 3 12
Grade 9 Mathematics Formula Sheet 12
*NEW Appendix 4 13
Part A Answer Sheet. 13
Part B Answer Sheet 15
*NEW Appendix 5 17
Part A Instructions Pages 17
Part B Instructions Pages 20
Contacts 2017-2018 23

You can find achievement test-related materials on the Alberta Education website.
Additional topics of interest are found in the General Information Bulletin.

Grade 9 Mathematics Assessment

Special-format Practice Tests

To provide students an opportunity to practise provincial achievement test-style questions and content in Braille, audio, large print, or coloured print versions, Alberta Education is making special-format practice tests available. Tests are offered in all subjects with a corresponding provincial achievement test. Alberta schools with registered Alberta K-12 students may place orders for these tests. Braille tests are available in English, and by request in French. All tests are provided free of charge, but limits may be placed on order volumes to ensure access for everyone.

For more information or to place an order, contact
Laura LaFramboise
Distribution Coordinator, Examination Administration
780-982-1644 or Laura.LaFramboise@gov.ab.ca

*NEW General Description

The Grade 9 Mathematics Achievement Test consists of two parts:

- Part A contains 20 numerical-response questions and was designed to be completed in 20 minutes. Part A will assess students' foundational skills and fluency in mental math, estimation, computation, and algebra, without the use of calculators.
- Part B contains 32 multiple-choice questions and 8 numericalresponse questions. Part B was designed to be completed in 70 minutes. Students may use manipulatives and calculators to complete Part B.

The test was designed to be completed in 90 minutes; however, students may have up to 180 minutes to complete this test, plus an additional 30 minutes if needed. Teachers have the flexibility to allocate the extra 120 minutes between Part A and Part B as they see fit.

The following bullets briefly describe the two item formats:

- Multiple-choice items that provide students with four response options, of which only one is correct.
- Numerical-response items that require students to generate a response (in symbolic form) to a particular problem, rather than selecting a response from a list of four options.

Test items are also categorized in terms of three levels of item complexity: low, moderate, and high. Low-complexity items require responses involving the simple recall and recognition of previously learned concepts and principles. Moderatecomplexity items require responses that go beyond the habitual and may require more-informal methods of reasoning and problem solving. High-complexity items require responses that are based on more-abstract reasoning, planning, analysis, judgment, and creative thought. (See Appendix 1 for a more detailed explanation of each complexity level.)
*NEW Use of Calculators and Manipulatives

Part A: Manipulatives may be used, but use of a calculator is not permitted.

Part B: Students may use calculators and manipulatives; however, use of graphing calculators is not permitted.

An acceptable manipulative is any mathematical tool that can be used by a student to help convert abstract ideas into concrete representations for the purpose of solving a problem (e.g., pattern blocks, tiles and cubes, geoboards, tangrams, counters, spinners, number lines). The manipulative cannot perform the mental conversion or provide the solution to a problem (e.g., multiplication table).

*NEW Local Marking of Test Part A and Part B

Marking keys will be provided to teachers for marking purposes. Teachers are expected to record and report the raw scores achieved on the test by their students to parents. Raw scores achieved by students on Part A and Part B are to be reported separately to parents and are not to be combined into a total test score.

*New Grade 9 Mathematics Achievement Test Blueprint

Test Component	Number of Questions	Question Format	Weighting on Total Test Score
Part A	20	Numerical Response	*TBA
Part B	32	Multiple Choice	*TBA

*TBA - To be announced.

Content Domain of Test (Strand)	Part A: Percentage of Questions	Part B: Percentage of Questions
Number	*TBA	$25-35 \%$
Patterns and Relations	*TBA	$35-45 \%$
Shape and Space		$20-30 \%$
Statistics and Probability		$5-10 \%$

*TBA - To be announced.

Cognitive Domain of Test (Complexity Level)	Part A: Percentage of Questions	Part B: Percentage of Questions
Low	100%	$30-40 \%$
Moderate		$45-55 \%$
High		$10-20 \%$

Description of Mathematics Assessment Standards

The following statements describe what is expected of Grade 9 students at the acceptable standard and the standard of excellence based on outcomes in the program of studies. These statements represent examples of the standards against which student achievement is measured. It is important to remember that one test cannot measure all the outcomes in the program of studies.
Acceptable Standard \quad Standard of Excellence

Students who meet the acceptable standard in Grade 9 Mathematics are typically able to:

- recall and apply a moderate number of mathematical properties to solve routine problems
- utilize familiar problem-solving strategies to solve routine problems
- connect and apply personal experiences and problem-solving strategies to solve routine problems
- recall and apply mathematical concepts and operational terms to solve routine problems
- apply computation skills and formal mathematics vocabularies to solve routine problems
- recognize and describe numerical and non-numerical patterns
- utilize semantic knowledge to construct correct mental representations of word problems
- use logical processes to analyze and solve routine problems
- recognize and use mathematical patterns to make predictions when solving routine problems
- test generalizations from patterns to reach conclusions

Students who meet the standard of excellence in Grade 9 Mathematics are typically able to:

- recall and apply a variety of mathematical properties to solve novel problems
- utilize a variety of problem-solving strategies to solve novel problems
- connect and apply personal experiences and strategies to check and verify solutions to novel problems
- apply abstract thinking skills to reframe mathematical concepts to solve novel problems
- generate linguistic and nonlinguistic representations of knowledge to solve novel problems
- demonstrate fluency in working with patterns represented concretely, pictorially, or symbolically
- utilize semantic knowledge to construct and reframe correct mental representations of word problems
- use logical processes to analyze complex problems, reach conclusions, and justify or defend conclusions
- recognize, extend, create, and use mathematical patterns to make and justify predictions when solving novel problems
- make generalizations from patterns to reach conclusions

Preparing Students for the Mathematics Test

Suggestions for Preparing Students

The best way to prepare students for writing the achievement test is to teach the curriculum well and to ensure that students know what is expected. Many of the skills and attitudes that support test writing are, in fact, good skills and strategies for approaching all kinds of learning tasks.

Note that most of the questions on the mathematics test are placed in real-life contexts.

Teachers are encouraged to familiarize their students with the types of questions that will appear on the test. Released items from previously secured tests are available on the Alberta Education website.

Teachers are also encouraged to share the following information with their students to help them prepare for the Grade 9
Mathematics Achievement Test.

Suggestions for Answering Questions

- Before you begin, find out how much time you have.
- Ask questions if you are unsure of anything.
- Skim through the whole test before beginning. Find out how many questions there are and plan your time accordingly.
- Answer the easier questions first; then go back to the more difficult ones.
- Do not spend too much time on any one question. Make a mark (* or ?) beside any questions you have difficulty with and go back to them if you have time.
- Read each question carefully, underline or highlight key words, and try to determine an answer before looking at the choices.
- Read all the choices and see which one best fits the answer.
- When you are not sure which answer is correct, cross out any choices that are wrong, and then select the best of the remaining choices.
- If time permits, recheck your answers.
- Double-check to make sure that you have answered everything before handing in the test.
- Read the information given using the strategy that works best for you. You should either
- look at all the information and think carefully about it before you try to answer the question

OR

- read the questions first and then look at the information, keeping in mind the question(s) you need to answer.
- Make sure that you look at all forms of the information given. Information may be given in words, charts, pictures, graphs, or maps.
- When information is given for more than one question, go back to the information before answering each question.
- Check your work when you calculate an answer, even when your answer is one of the choices.
- When answering "best answer" questions, be sure to carefully read all four alternatives ($\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D) before choosing the answer that you think is best. These questions will always include a bold-faced qualifier such as best, most strongly, or most clearly in their stems. All the alternatives (A, B, C, and D) are, to some degree, correct, but one of the alternatives will be "best" in that it takes more of the information into account or can be supported most strongly by reference to the information.

Opportunities to Participate in Test Development Activities

Field Testing

All Achievement Testing Program test questions are field tested before use. By "testing" the test questions, students who write field tests have an opportunity for a practice run at writing questions that could be used on future achievement tests. As well, the teachers have an opportunity to comment on the appropriateness and quality of the test questions.

Through the online field test request system, teachers can create and modify field test requests and check the status of these requests. Information regarding the field test process and the request system is available at Provincial Achievement Tests.

Once the completed requests are received by the Provincial Assessment Sector, classes will be selected to ensure that a representative and sufficiently large sample of students from across the province take part in the field test. Every effort will be made to place field tests as requested; however, because field tests are administered to a prescribed number of students, it may not be possible to fill all requests.

For further information about achievement field testing, see the Field Testing section of the General Information Bulletin.

Working Groups

Teacher involvement in the development of provincial achievement tests is important because it helps to ensure the validity and appropriateness of the assessments.

To be selected to participate in a working group, a teacher must be nominated by a school administrator or superintendent, and that nomination must be approved by the superintendent. To ensure that selected working-group members have appropriate subject matter training and teaching experience, nominees are asked to provide their information to their school administrator so that it can be forwarded to the Provincial Assessment Sector at Alberta Education through the superintendent.

Test Development

Teacher working groups are used throughout the test development process to create raw forms of test questions, and to review and revise draft forms of provincial achievement tests. These working groups usually meet for one or two days, two or three times per year. Occasionally, these meetings are held on weekends or in the summer.

To be eligible to serve on a test development working group, a teacher must currently be teaching Grade 9 Mathematics and must have a minimum of two years' experience teaching the course.

Teachers participating in test development and/or test review working groups are selected from the working-group nominees provided by superintendents of school jurisdictions.

*New Appendix 1

Part A: Sample Questions

1. What is $(-2) \times(-1) \times(-3)$?

Answer:

\qquad
2. What is 30% of 42 ?

Answer: \qquad
3. What is the value

$$
\text { of } \frac{(-4)^{2} \times(-4)^{3} \times(-4)^{4}}{(-4)^{6}} \text { ? }
$$

Answer: \qquad
4. What is the value of $\left[-\left(-3^{0}\right)^{2}-\left(2^{2}\right)^{1}\right]^{2}$?

Answer: \qquad
9. What is the value of $\sqrt{\frac{145}{4}}$ to the nearest whole number?

Answer: \qquad
(Record the answer on the answer sheet.)

Use the following information to answer question 10.

10. If the area of the square shown above is $135 \mathrm{~cm}^{2}$, what is the side length to the nearest tenth of a centimetre?

Answer: \qquad
(Record the answer on the answer sheet.)
11. Order the following rational numbers from smallest value to greatest value, using the numbers 1, 2, 3, and 4.

Use the number $\mathbf{1}$ to represent the smallest value and the number 4 to represent the greatest value.

Answer: \qquad , \qquad , \qquad
\qquad
$\sqrt{\frac{4}{9}}$
$-1 . \overline{5}$
-1.75 $-\frac{8}{5}$
(Record all four digits of your answer on the answer sheet.)
12. What is the value of $0.4 \div 0.8-\sqrt{\frac{9}{36}} \times 1 \frac{1}{5}$?

Answer: $x=$ \qquad
(Record your answer on the answer sheet.)
13. What is the largest value of $\left(\boldsymbol{a}^{\boldsymbol{b}} \div \boldsymbol{a}^{\boldsymbol{d}}\right)^{\boldsymbol{c}}$ when the variables in the expression represent the digits $1,2,3$, and 4 ? (Each variable can only represent one of the four digits.)

Answer: \qquad
(Record the answer on the answer sheet.)

Appendix 2

Levels of Item Complexity

Low Complexity

Items in this category require students to rely heavily on recalling and recognizing previously learned concepts and principles. Items typically specify what students are to do, which is often to carry out some procedure that can be performed mechanically. Students would not be expected to come up with original methods for finding a particular solution. The following list illustrates some of the demands that items of low complexity may require of students:

- Recall or recognize a fact, term, or property
- Recognize an example of a concept
- Perform a specified procedure
- Evaluate an expression in an equation or formula for a single variable
- Solve a one-step word problem
- Draw or measure simple 2-D shapes or 3-D objects
- Retrieve information from a graph, table, or figure

Moderate Complexity

Items in this category involve more flexibility of thinking and choice among alternatives than do those in the lowcomplexity category. They require a response that goes beyond the habitual, is not specified, and may require more than a single step. The student is expected to decide what to do, using informal methods of reasoning and problem-solving strategies, and to bring together skill and knowledge from various domains. The following list illustrates some of the demands that items of moderate complexity may require of students:

- Solve a word problem requiring multiple steps
- Compare figures or statements
- Provide a justification for steps in a solution process
- Interpret a visual representation
- Retrieve information from a graph, table, or figure and use it to solve a problem requiring multiple steps
- Interpret a simple argument
- Generalize a pattern

High Complexity

Items in this category make heavy demands on students by requiring them to engage in more-abstract reasoning, planning, analysis, judgment, and creative thought. The following list illustrates some of the demands that items of high complexity may require of students:

- Perform a procedure having multiple steps and multiple decision points
- Analyze similarities and differences between procedures and concepts
- Formulate an original problem, given a situation
- Solve a problem in more than one way
- Explain and justify a solution to a problem
- Describe, compare, and contrast solution methods
- Formulate a mathematical model for a complex situation
- Analyze the assumptions made in a mathematical model
- Analyze or produce a deductive argument
- Provide a mathematical justification

Adapted from Norman L. Webb, Wisconsin Center for Educational Research, "Depth-of-Knowledge Levels for Four Content Areas," March 28, 2002.

Appendix 3

Grade 9 Mathematics Formula Sheet

The following information may be useful in writing this test.

Area (A)

$$
\begin{array}{ll}
\text { Circle } & A=\pi r^{2} \\
\text { Rectangle } & A=l w \\
\text { Triangle } & A=\frac{b h}{2}
\end{array}
$$

Volume (V)
Right Cylinder $\quad V=\pi r^{2} h$

Prism $\quad V=($ Base Area $)(h)$

Circumference (C)

$$
\text { Circle } \quad C=\pi d \text { or } 2 \pi r
$$

Pythagorean Theorem

$c^{2}=a^{2}+b^{2}$ where c is the hypotenuse

*New Appendix 4

Part A Answer Sheet

Γ

Alberta Education, Provincial Assessment Sector
$\cdot \mathrm{y} \exists \mathrm{d} \forall \mathrm{d}$ SIH SYY甘W 人 $\forall \mathcal{C} \perp$ S $\lambda N \forall \exists Y \forall W \perp O N O Q$

L

1. USE HB PENCIL ONLY.
2. MAKE HEAVY BLACK MARKS TO FILL
CIRCLE COMPLETELY.
3. TO CHANGE AN ANSWER, ERASE THE OLD MARK
CLEANLY BEFORE FILLING IN THE NEW CIRCLE.
4. DO NOT MAKE ANY STRAY MARKS ON
THIS PAPER.

HOME EDUCATED FOR
THIS SUBJECT
ameN
эа०э 700ноя

GRADE 9 MATHEMATICS ACHIEVEMENT TEST

7

*New Appendix 5

Part A Instructions Pages

Copyright 2018, the Crown in Right of Alberta, as represented by the Minister of Education, Alberta Education, Provincial Assessment Sector, 44 Capital Boulevard, 10044108 Street NW, Edmonton, Alberta T5J 5E6, and its licensors. All rights reserved.

Duplication of this test in any manner or its use for purposes other than those authorized and scheduled by Alberta Education is strictly prohibited.

Grade 9 Achievement Test
 Mathematics Part A

 Numerical Response

 Numerical Response}

Description

The Grade 9 Mathematics Achievement Test consists of two parts:

- Part A contains 20 numerical-response questions and was designed to be completed in 20 minutes.
- Part B contains 32 multiple-choice questions and 8 numerical-response questions. Part B was designed to be completed in 70 minutes.
Time: $\mathbf{9 0}$ minutes. You have up to 180 minutes to complete this test plus an additional 30 minutes should you need it. The extra time can be shared between Part A and Part B, as decided by your teacher.
A formula sheet is included in this booklet.

Instructions

- Use only an HB pencil to mark your answer.
- You may use manipulatives; however, use of a calculator is not permitted.
- Try to answer every question.
- If you change an answer, erase your first mark or marks completely.

You may write in this booklet if you find it helpful. Make sure that your answers to the numerical-response questions are placed on the answer sheet.

2018

Numerical Response

- Record your answer on the answer sheet provided by writing it in the boxes.
- Enter your answer, with one digit per box, beginning in the left-hand box. A decimal point, if needed, goes in its own box. A negative sign (-), if needed, goes in its own box. Do not include a plus sign (+) if the answer is positive. Leave any unused boxes blank.
- You may fill in the bubbles below each of your answers after you have completed this test.

Example 1

What is $1-5$?
Answer: -4

Example 2

If $x=4.6$, then what does $2 x$ equal?
Answer: 9.2

Example 3

What is $5.4-5.1$?

Example 4

What is 7.5×3 ?
Answer: 22.5

Example 5

What is the value of $\frac{1}{4}+\frac{1}{2}$ expressed as a fraction?

Answer: $\frac{3}{4}$ (Record in the first box)
Record 34 on the answer sheet

Example 6

$78.5-24.2=5 _.3$

In the equation above, which digit could be placed in the blank space to make the equation correct?
(Record only the missing digit on the answer sheet.)
Answer: 54.3

Example 7

$$
786.5-244.2=5 _\ldots .3
$$

In the equation above, which two digits could be placed in the blank spaces to make the equation correct?

Answer: 5 . 3
(Record only the two missing digits, in order, on the answer sheet.)

Answer: $5 \underline{\mathbf{4}} \mathbf{2} .3$

Part B Instructions Pages

Copyright 2018, the Crown in Right of Alberta, as represented by the Minister of Education, Alberta Education, Provincial Assessment Sector, 44 Capital Boulevard, 10044108 Street NW, Edmonton, Alberta T5J 5E6, and its licensors. All rights reserved.

Duplication of this test in any manner or its use for purposes other than those authorized and scheduled by Alberta Education is strictly prohibited.

Grade 9 Achievement Test
 Mathematics

Part B

Multiple Choice and Numerical Response

Description

The Grade 9 Mathematics Achievement Test consists of two parts:

- Part A contains 20 numerical-response questions and was designed to be completed in 20 minutes.
- Part B contains 32 multiple-choice questions and 8 numerical-response questions. Part B was designed to be completed in 70 minutes.

Time: $\mathbf{9 0}$ minutes. You have up to 180 minutes to complete this test plus an additional 30 minutes should you need it. The extra time can be shared between Part A and Part B, as decided by your teacher.

A formula sheet is included in this booklet.

Instructions

- Use only an HB pencil to mark your answer.
- You may use a ruler, manipulatives, and a calculator; however, a graphing calculator is not permitted. Use of a protractor is also not permitted.
- Read each question carefully and choose the correct or best answer.
- Try to answer every question.
- If you change an answer, erase your first mark completely.
- Now read the detailed instructions for answering multiple-choice and numericalresponse questions.

You may write in this booklet if you find it helpful. Make sure that your answers to the multiple-choice and numerical-response questions are placed on the answer sheet.

Multiple Choice

- Each question has four possible answers from which you are to choose the correct or best answer.
- Locate the question number on the separate answer sheet provided and fill in the circle that corresponds to your choice.

Example

If $x=3$, what is the value of $x+8$?
A. 10
B. 11
C. 12
D. 13

Answer: 11

Answer Sheet
 (A) (C) (D)

Numerical Response

- Record your answer on the answer sheet provided by writing it in the boxes and then by filling in the corresponding circles.
- Enter your answer, one digit per box, beginning in the left-hand box. A decimal point, if needed, goes in its own box. Leave any unused boxes blank.

Calculation Question and Solution

Example 1

What is $5-1$?

Answer: 4

Example 2

If $x=4.6$, then what does $2 x$ equal?
(Record your answer in the numerical-response section on the answer sheet.)

Answer: 9.2

Example 3

What is $5.4-5.1$?
Answer: 0.3

Example 4

What is 7.5×3 ?
Answer: 22.5

Matching Question and Solution

Example

The following pictures are of 2-D shapes.

Match each shape, as numbered above, with its name, as given below.

(Record all four digits of your answer in the numericalresponse section on the answer sheet.)

Answer: 2431
Record 2431 on the answer sheet

in the corresponding circles

Contacts 2017-2018

*NEW	Provincial Assessment Sector	Ray Shapka	
	Dan Karas, Executive Director	Knowledge \& Employability (K\&E)	
	Provincial Assessment Sector	780-422-2786	
	780-422-4848	Ray.Shapka@gov.ab.ca	
	Dan.Karas@gov.ab.ca	Exam Administration	
	Grade 3, 6, and 9 Provincial Assessment	Joanne Neal, Director *NEW	
	Nicole Lamarre, Director	Exam Administration	
	Student Learning Assessments and	780-492-1495	
	Provincial Achievement Testing	Joanne.Neal@gov.ab.ca	
	780-427-6204	Pascal Couture, Senior Manager *NEW	
	Nicole.Lamarre@gov.ab.ca	Exam Administration and Production	
*NEW	Gilbert Guimont, Director French Assessment 780-422-3535 Gilbert.Guimont@gov.ab.ca	780-492-1462	
		Pascal.Couture@gov.ab.ca	
		Pamela Klebanov, Senior Manager Business Operations and Special Cases 780-492-1443	
	Senior Managers	Pamela.Klebanov@gov.ab.ca	
	Julia Lee-Schuppli	Steven Diachuk, Coordinator Field Testing, Special Cases, and GED 780-492-1453 Steven.Diachuk@gov.ab.ca	
	Gr. 3 English Language/Literacy		
	780-422-3338		
	Julia.LeeSchuppli@gov.ab.ca		
	Renate Taylor Majeau		
	Gr. 3 Numeracy (English and French)	Exam Administration special.cases@gov.ab.ca	
	780-422-2656		
	Renate.TaylorMajeau@gov.ab.ca	Inquiries about field testing	
	Peggy Lee Peters	can be sent by email to	
	Gr. 3 Francophone and	field.test@gov.ab.ca	
	French Immersion Literacy		
	780-422-5464	Provincial Assessment Sector	
	PeggyLee.Peters@gov.ab.ca	Mailing Address	
	Robyn Pederson	Provincial Assessment Sector, Alberta Education	
	Gr. 6 English Language Arts and Social Studies	44 Capital Boulevard	
	780-415-2023	10044108 Street NW	
	Robyn.Pederson@gov.ab.ca	Edmonton AB T5J 5E6	
	Denis Dinel	Telephone: 780-427-0010 Toll-free within Alberta: 310-0000 Fax: 780-422-4200 Alberta Education website: education.alberta.ca	
	Gr. 6 and 9 Français/French Language Arts		
	780-422-9424		
	Denis.Dinel@gov.ab.ca		
	Kelly Rota		
	Gr. 6 and 9 Mathematics	Client Services Help Desk: Telephone: 780-427-5318 Toll-free within Alberta: 310-0000 Email: cshelpdesk@gov.ab.ca Office Hours: Monday through Friday, 8:15 a.m. to 4:30 p.m. The office is open during the lunch hour.	
	780-422-4365		
	Kelly.Rota@gov.ab.ca		
	Kelty Findlay		
	Gr. 6 and 9 Science		
	780-415-6120		
	Kelty.Findlay@gov.ab.ca		
	Harvey Stables Gr. 9 English Language Arts and Social Studies $780-422-2913$ Harvey.Stables@gov.ab.ca		

